Explanatory Notes: BKZ Polymetallic 2022 Resource Estimate procedures, observations and outcomes; presented according to the JORC TABLE 1 checklist of the JORC Code (2012).

Prepared for: Asiamet Resources Limited By: Hackman & Associates Pty Ltd Date: May 2022

Summary:

This technical explanation of the BKZ Polymetallic 2022 Resource Estimate follows the format of Table 1 in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). It outlines activities undertaken by Kalimantan Surya Kencana ("KSK") and their associates and Hackman & Associates Pty Ltd ("H&A") in generating the estimate and presents outcomes and observations material to the understanding of the mineralisation and risks associated with the resource estimate. The BKZ Polymetallic Project is a base and precious metals Mineral Resource, neighbouring the BKM Copper Mineral Resource and is located 180 kilometres north of Palangkaraya, the capital city of Central Kalimantan. The BKZ Polymetallic mineralisation ("BKZ") is located within a 6th generation Contract of Work ("KSK CoW") held by PT Kalimantan Surya Kencana ("KSK"), which through various intermediary companies, is a 100% owned subsidiary company of Asiamet Resources Limited ("ARS"). H&A has undertaken the BKZ Polymetallic 2022 Resource Estimate for, and at the request of Asiamet Resources Limited.

Location map – KSK Contract of Work containing the BKZ Polymetallic Mineralisation.

The 2022 BKZ Polymetallic Resource Estimate is based on the KSK geological and analytical database as at 12 April 2022 and the 2022 geological, structural and mineralisation interpretations by Patrick Creenaune, a Consulting Geologist to KSK. Assay data QC was managed by KSK and their interim report dated Nov 2021 and QC assay data analysis (May 2022) were reviewed by H&A. The data analyses, triangulation domaining, block modelling, grade interpolation and classification was undertaken by Duncan Hackman of H&A.

The 2022 BKZ Resource Estimate is the second Resource Estimate for the BKZ Project and estimates the mineralisation within both the Upper Polymetallic Zone ("UPZ") and the Lower Copper Zone ("LCZ") that define the base metal mineralisation in the project. The estimate incorporates information and data from 6 scout diamond holes drilled in 1999, 36 diamond holes drilled to delineate the extent of the better developed mineralisation in 2017-18 and 30 drillholes testing peripheral and depth extents of the mineralisation, drilled in 2021-22. The 2022 BKZ Resource Estimate does not report on the sparsely drilled peripheral lead-zinc and copper mineralisation or on the gold-silver mineralisation discovered in the 2021-22 drilling campaign. The exploration potential of this peripheral base metal mineralisation and proximal precious metal mineralisation (located immediately east of the base metal Resources) is reported as Exploration Targets exclusively in explanatory notes titled "Explanatory Notes: BKZ 2022 Base Metal and Gold-Silver Exploration Targets, procedures, observations and outcomes; presented according to the JORC TABLE 1 checklist of the JORC Code (2012)" (available on ARS website, www.asiametresources.com).

The 2022 Resource model covers 350m of the N-S strike extent of the mineralisation at BKZ and up to 175m of width and depth extent of the semi-massive sulphide and sulphidic silicified volcanic hosted mineralisation. The UPZ mineralisation is open to the north and east and outcrops to the west, while the LCZ remains open at depth in the central area of BKZ. Up to 400m of depth extension and/or repetition potential of mineralisation has been tested to the east (southern and central volumes), below a footwall diorite sill where gold mineralisation was encountered, however the depth extension/repetition has not been fully tested, with areas immediately below mineralisation and volumes to the north, south and west still considered prospective.

The BKZ UPZ and LCZ resource model is defined and underpinned by data from 72 diamond drill holes (11,427m) containing 6,278 logged and assayed, mainly 1m intervals. Sample data was composited to two metre intervals and flagged by the domains defined in the geological and mineralisation interpretations. Single and double passes of Inverse Distance Squared interpolation runs were employed to estimate Cu, Zn, Pb, Ag and Au grades within domains into a sub-blocked model (parent block size of 25mE x 25mN x 10mRL). High grade restrictions were applied. Tonnage factors were applied to blocks by a regression formulae determined between measured dry bulk density and the total estimated Fe+Zn+Pb+Cu grade. Mineralisation was assessed with respect to having reasonable prospects for economic extraction and the resource estimate reporting cuts are supported by this evaluation. The resource estimate has been classified based on data density, data quality, confidence in the geological interpretation and confidence in the robustness of grade interpolation.

	2022 BKZ Polymetallic Deposit Inferred Resource Estimate (JORC Code, 2012)											
	Upper Polymetallic Zone. High Grade Zinc Domain. Inferred Resources (JORC 2012) *											
Lower Reporting Cut	Tonnes	Grade				Contained Metal						
(Zn%)		Zn (%)	Pb (%)	Ag (ppm)	Au (ppm)	Zn (KT)	Pb (KT)	Ag (Koz)	Au (Koz)			
4.0	1050	8.6	3.5	62	0.31	90	37	2076	10.5			
6.0	<mark>890</mark>	9.2	3.8	67	0.34	82	34	1909	9.7			
Upper Polymetallic Zone. Low Grade Zinc Domain. Inferred Resources (JORC 2012) **												
Lower	Tonnes	Grade				Contained Metal						
Reporting Cut (Zn%)	(KT)	Zn (%)	Pb (%)	Ag (ppm)	Au (ppm)	Zn (KT)	Pb (KT)	Ag (Koz)	Au (Koz)			
1.0	600	1.5	0.4	15	0.21	9	2	295	4.1			
2.0	50	2.1	0.5	14	0.29	1	0	23	0.5			
Upper Polym	etallic Zone	. Total Infer	red Resourc	e Estimate	[Combined	JPZ High Gr	ade + UPZ L	ow Grade D	omains]			
Lower	Tonnes		Gra	ade			Containe	ed Metal				
Reporting Cut (Zn%)	(KT)	Zn (%)	Pb (%)	Ag (ppm)	Au (ppm)	Zn (KT)	Pb (KT)	Ag (Koz)	Au (Koz)			
1.0	1680	6.0	2.4	45	0.27	101	40	2415	14.6			
2.0	1140	8.1	3.3	59	0.31	92	38	2155	11.4			
4.0	1050	8.6	3.5	62	0.31	90	37	2076	10.5			
6.0	890	9.2	3.8	67	0.34	82	34	1909	9.7			

The BKZ Polymetallic 2022 Inferred Resources (JORC 2012) are estimated as:

* Lowest estimated Zn grade in the UPZ high grade zinc domain is 2.8%Zn. 30kT of the UPZ high grade zinc domain is estimated to host <4%Zn grade.

** Highest estimated Zn grade in the UPZ low grade zinc domain is 2.6%Zn

2022 BKZ Polymetallic Deposit Inferred Resource Estimate (JORC Code, 2012)												
Lower Copper Zone. Copper and Silver Mineralisation												
Lower	Tonnes		Grade		Со	ntained Metal						
Reporting Cut (Cu%)	(KT)	Cu (%)	Ag (ppm)	Au (ppm)	Cu (KT)	Ag (Koz)	Au (Koz)					
0.5	1600	1.3	17	0.14	21	895	7.2					
1.0	1060	1.6	1.6 20 0.15 17 688 5.1									

Notes: Lower Zn and Cu grade reporting cuts approximate the mineralised domains extents. Mineral Resources for the BKZ Polymetallic Project have been estimated and reported under the guidelines detailed in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012). In the opinion of Duncan Hackman, the block model, resource estimate and resource classification reported herein are a reasonable representation of the mineral resources found in the defined area of the BKZ Polymetallic Project. Mineral Resources are not Ore Reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resource will be converted into Ore Reserves. Computational discrepancies in the table are the result of rounding.

Continuity confidence associated with Zinc-Lead intercepts in wide spaced drilling to the east of the UPZ resources and Copper intercepts to the north of the LCZ are reported as Exploration Results and not included with the Resources reported here.

Gold mineralisation located to the east and at depth within the BKZ area is reported as Exploration Results and not included with the Resources reported here.

The Mineral Resources at BKZ have increased in the 2022 estimate over those reported in 2018 where it was reported that:

- At a 4%Zn lower reporting cut there was 750KT of mineralisation containing 60KT of Zn and 26KT of Pb estimated in the UPZ mineralised domain.
- At a 0.5%Cu lower reporting cut there was 1100KT of mineralisation containing 12KT of Cu and 460Koz of Ag in the LCZ mineralised domain.

Both the reported tonnages and grades have increased in the 2022 Resource Estimate over those reported in 2018 resulting in increases in contained metal contents of:

- At a 4%Zn lower reporting cut, an additional 30KT of Zinc (+50%) and an additional 11KT of Lead (+42%).
- At a 0.5%Cu lower cut, an additional 9KT of Copper (+75%) and an additional 435Koz of Silver (+95%)

This is attributed to:

- The 2021-22 drilling enabling the UPZ low grade and high grade domains to be extended up to 50m to the east over approximately 75% of the mineralisation strike length and the thickening of the mineralisation in the eastern portions of the domain (Figure 1).
- The 2021-22 drilling enabling the thickened section of the LCZ mineralised domain to be extended east and north, beyond the extent of where this mineralisation was extrapolated in the 2018 Resource Estimate (Figure 1).
- The 2021-22 drilling of the LCZ intercepting higher grade copper mineralisation, contributing a portion of the increased copper grades reported in 2022 over those reported in 2018.
- The additional data and increased drill density facilitating confidence in more representative treatment of high grade intercepts in both the UPZ and LCZ domains; resulting in higher interpolated grades in the 2022 model of volumes within these intercepts' immediate vicinity. The better representation of high grade intercepts is reflected in the increased grades reported in 2022 over those reported in 2018 for the UPZ mineralisation and a portion of the increased grades reported for the LCZ mineralisation.

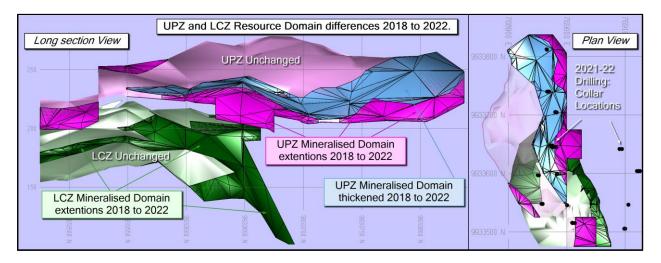


Figure 1: Long section and Plan view: UPZ and LCZ domain differences between 2018 and 2022 Resource Estimates.

Contributing Experts:

Expert Person / Company	Area of Expertise and Contribution of Expert
Mr. Duncan Hackman B.App.Sc., MSc, MAIG.	<i>Exploration and Resource Geology – 36yrs experience</i> . Data investigations, resource domaining, block modelling, grade
Hackman & Associates Pty. Ltd.	interpolation, resource classification.
Mr. Hari Wisnu ST, CPI	Database Geologist – 27yrs experience. Data validation and
PT Kalimantan Surya Kencana	quality assurance.
Mr. Patrick Creenaune BSc (Hons), MSc, Dip	Exploration and Resource Geology – 40yrs experience covering
Fin & Inv, Fellow AIG.	VHMS, Porphyry Cu, epithermal gold, sediment hosted gold,
Creenaune Geological Consulting	Archean shear hosted gold, slate belt gold and IOCG deposits.
	Geological and mineralisation interpretation.

Compliance with the JORC code assessment criteria and Competent Persons Consent:

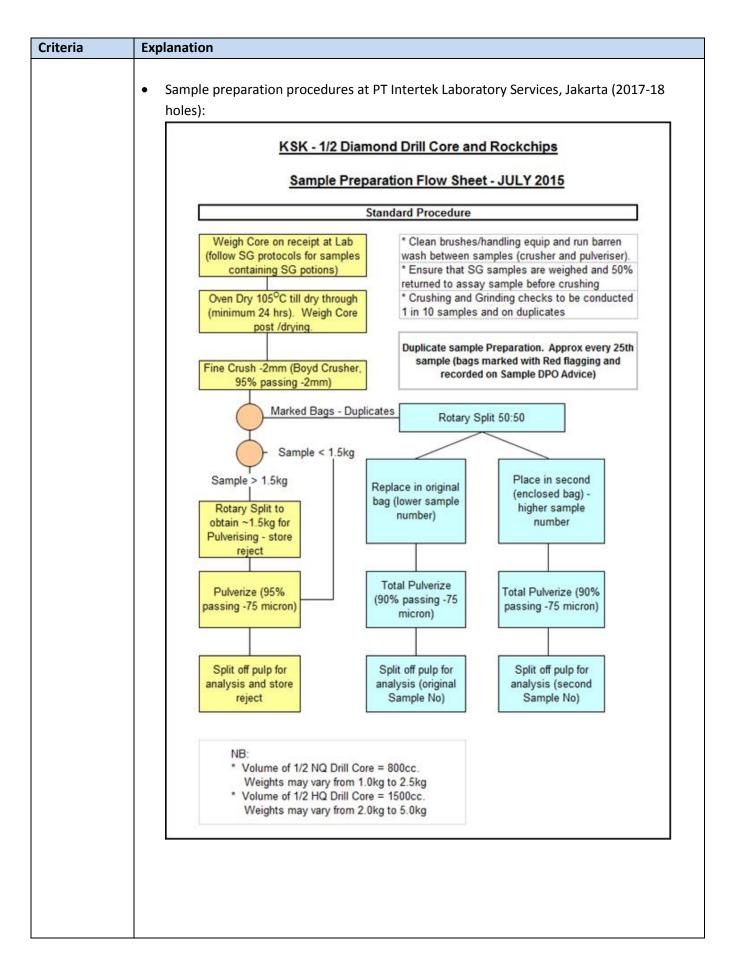
This Mineral Resource has been compiled in accordance with the guidelines defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition).

Duncan Hackman of Hackman & Associates (H&A) is a member of the Australian Institute of Geoscientists and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). Neither Duncan Hackman nor H&A have any material present or contingent interest in the outcomes of the BKZ Polymetallic Project Resource Estimate, nor do they have any pecuniary or other interest that could be reasonably regarded as being capable of affecting their independence. H&A's fee for completing this Resource Estimate is based on its normal professional daily rates plus reimbursement of incidental expenses. The payment of the professional fee is not contingent upon the outcome of the estimate.

The opinions and recommendations provided by Duncan Hackman are in response to requests of technical basis by Asiamet Resources Limited and based on data and information provided by Asiamet Resources Limited or their agents. Duncan Hackman and H&A therefore accept no liability for commercial decisions or actions resulting from any opinions or recommendations offered within.

Duncan Hackman B.App.Sc., MSc, MAIG Consulting Geologist Hackman & Associates Pty. Ltd.

This document covering the technical reporting of procedures, observations and outcomes relating to the generation of the BKZ Polymetallic 2022 Resource Estimate follows the guidelines defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). H&A presents these procedures, observations and outcomes as outlined in the JORC TABLE 1 checklist of the JORC Code (2012).


A list of abbreviations specific to this BKZ Project Resource Estimate Explanatory Notes is included following the JORC TABLE 1 checklist report.

Criteria	Explanation								
Sampling techniques	 1999 drilling (6 holes), 2017-18 drilling (36 holes) and 2021-22 (30 holes): Assay samples comprise of ½ HQ3 diamond core: 1999: Nominal 2m intervals 2017-18 and 2021-22: Nominal 1m intervals Diamond core saw cut Geotechnical and recovery logging sampled at drill run-length intervals Structural logging undertaken on core tray intervals Geological and mineralisation logging undertaken on geological/mineralisation intervals 								
Drilling techniques	HQ3 diamond drilling								
Drill sample recovery	 Data collected: 1999, 2017-18 and 2021-22 drilling: Length core recovery = (measurement of total length of core recovered in tray for each drill run-length) / (length of drill run-length drilled) 2017-18 and 2021-22 drilling: Partial or internal core recovery [or core condition] = visual inspection of core to assess according to the following four categories: Extreme: Rubbly core, clear indication of washing and selective recovery Moderate: Broken and scrubbed core, short intervals of rubbly core Minor: Scrubbed core, short intervals of broken core None: complete and intact core 								
	 Observations for Length Core Recovery, 2017-18 drilling: High grade zinc mineralisation: 96% samples with >90%Recovery Low grade zinc mineralisation: 91% samples with >90%Recovery Copper mineralisation: 97% samples with >90%Recovery Visual assessment of the 15 mineralised intervals containing the 40 samples with ≤90% length recovery confirmed that grades of the low recovery samples are comparable with the high recovery samples within the intervals. The inclusion of the low recovery samples in the assay dataset will not present a risk to the 2022 BKZ resource estimate. 								
	 Observations for Partial/Internal Core Recovery [core condition], 2017-18 drilling: High grade zinc mineralisation: 25% samples logged as being of moderate and extreme degraded condition. Visually it is not clear if the grades of the poor condition samples are impacted by internal loss. There is an observed relative bias in favour of the good conditioned (no or little internal loss) for Zn and Pb assays and very little difference in grades up to the 80th percentile for Ag and Au 								

Sampling Techniques and Data

Criteria	Explanation
	 assays after which, in the top 20th percentile of the dataset, the poor condition core samples show higher grades. Low grade zinc mineralisation: 31% samples logged as being of moderate and extreme degraded condition. Visually it is not clear if the grades of the poor condition samples are impacted by internal loss. There is an observed relative bias in favour of the poor condition samples (rubble and broken/scrubbed core) for Zn, Pb and Ag assays and low relative bias observed in Au assays for these samples. Copper mineralisation: 14% samples logged as being of moderate and extreme degraded condition. Visually it is not clear if the grades of the poor condition samples are impacted by internal loss. There is an observed relative bias in favour of the poor condition samples (rubble and broken/scrubbed core) for Cu and Ag. At present the low sample count diminishes confidence in interpreting the observations from analyses of the partial or internal core recovery logging. The loss of material appears to have been selective and there are some significant grade tenor shifts observed, however it is a curiosity that not all elements are biased in favour of the same recovery groups (moderate/extreme vs minor/none). Ongoing evaluation with future drilling is imperative to ensure that the risk associated with this core loss is understood and its impact is minimised. The risk to the 2021-22 drilling programme within the reported resources represent 25% of the UPZ mineralised domain and 35% of the LCZ mineralised domain it is considered that their inclusion into the analysis would not significantly alter the observations from the 2018 RE evaluation (2017-18 drilling programme review, above) and therefor the evaluation has not been updated to include this data. H&A has, in the course of undertaking the 2022 resource estimate, assested photographs of all mineralised cor did not observed any intervals of increased concern over than described for the 2018 resource estimate. H&A considers
Logging	 estimate. Logging procedures as follows: Simplified coding of logged intervals (100% of core) in the digital dataset describes the geology, structure, mineralization and alteration at BKZ. The core shed logging was validated by review of the core photography and assessed wrt mineralisation styles and grade tenor by Mr Patrick Creenaune in preparation for use in geological and mineralisation interpretation and resource domaining. There is no oriented core at BKZ, rendering structural measurements of no value. Geotechnical logging (RQD and fractures) was undertaken on all core. Base of oxidation logging for all holes above the UPZ mineralisation was verified by H&A from core photographs.

Explanation
The onsite processing workflow is as follows (all holes):
 Core is packed and carried by hand then vehicle from drill sites to the core
processing facility at camp (located immediately east of the BKM mineralisation,
and 1200m to the southeast of BKZ).
 Core blocks and tray details are checked and depth details recorded on trays.
 Core trays are weighed and photographed wet.
 Geotechnical and geological logging undertaken.
 Geologist selects segments of core for SG determination, which is then
undertaken by core yard technicians.
 Sample intervals are determined by geologists and core is split longitudinally by
core saw. Clayey and incompetent core is wrapped in glad-wrap and packing tape prior to cutting. Sampling produces samples ranging in weight between 3kg and 5kg (av. 3.5kg). 6278m of core is sampled at BKZ. Lengthy intervals of non- sulphidic core remains unsampled (5149m, minimum length = 11m, maximum length = 159.6m (excludes sections of holes traversing unmineralised hangingwall volcanics)).
 CRM Standards, coarse blanks (granite), pulp blanks (certified pulps) and coarse
crush duplicates are inserted into the sample sequence (coarse crush duplicates
are generated at ITS during sample preparation, empty, numbered bags are
included within the sampling sequence in preparation for their creation).
 Core and QC samples are bagged and security lock-tagged for transport to ITS
Jakarta (2017-18 drilling) and GeoServices Jakarta (2021-22 drilling).
 Dispatch paperwork is prepared for the laboratories which includes the list of
coarse crush duplicates to be prepared and, for the 2017-18 samples, where SG segments require drying separately and recombining with the remaining
material for their sample intervals before crushing.
 Half core in trays is photographed both wet and dry.
 Core block details inscribed onto aluminium tags which are then attached back
onto core blocks. Tray details are engraved onto trays before being packed and
transported by light vehicle to the Tengkiling core shed for rack storing under
cover.
Chain of custody documentation is completed for the following activities:
 Drill surveys
 Core pick-up at rig
 Core received at camp
 Core photos
• Core logging
 Core geotech-logging
• Core data collection
 Core sampling
 Core sample transport record
 Data entry checklist
 Core summary log

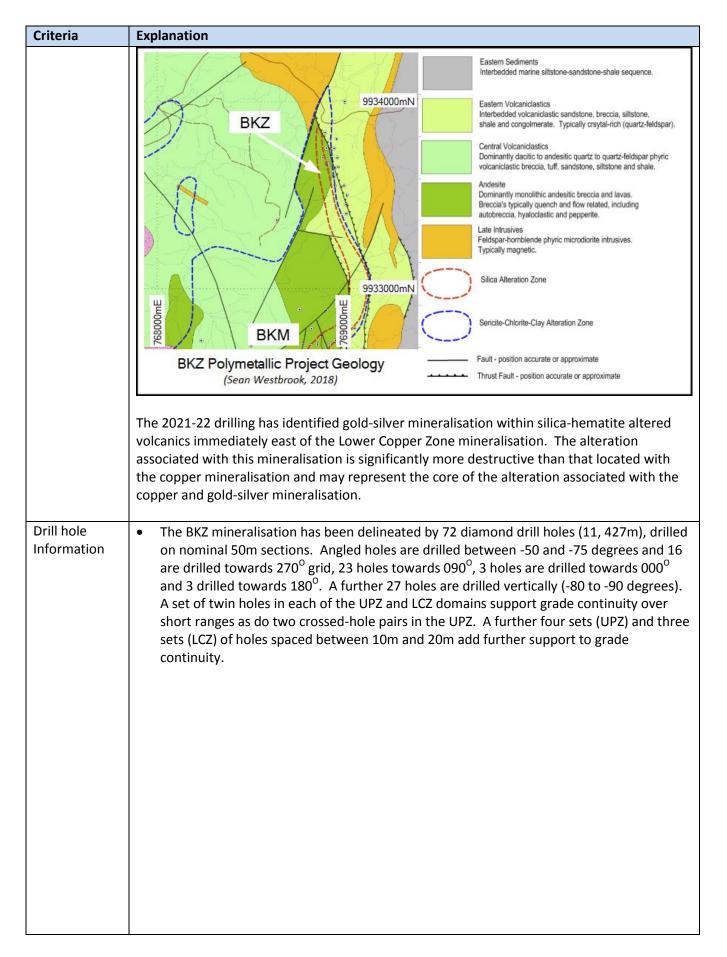
Criteria	Explanation								
	Sample preparation procedures at PT GeoServices Laborator laboratory document ID GEO-MIIN-WI-1.011): PT GEOSERVICES – GeoAssay Laboratory	Ory, Jakarta (2 No. Dokumen	2021-22 holes,						
	Mineral Division	Edisi/ No.Revisi	03/02						
	PROSEDUR PREPARASI SAMPEL SEBAGIAN	Tanggal Efektif	29/03/2021						
	TERHADAP SAMPEL MINERAL DAN BIJIH TAMBANG	Halaman	Page 19 of 22						
	LAMPIRAN A – SOP # DIAGRAM ALIR UNTUK PREPARASI SAMPEL S	EBAGIAN							
	SAMPLE PREPARATION PROTOCOL								
	Sample Receiving Sort Samples Submission No Stop Yes Stop	Sample Transmittal	Record on Lab worksheet						
	Pulverize LM2 P95 75um Pulverize LM2 P95 75um Biend and Split 1 x 150g Lab Analysis (DA)	Sieve 75um 1:15 Samples. Report QC	Record on Lab worksheet						
	EUDIFINIENT RECONCENTENTS Sample Submission Accuracy Jaw Crusher 6-mm Sieve for QC checks Rotary Sample Dividen/Splitter UM2 Pulverizer Zews 56 for QC checks Sample 1 Jaw Crusher 6-mm Sieve for QC checks Rotary Sample Dividen/Splitter UM2 Pulverizer Zews 56 for QC checks Sample 1 Jaw Crusher 6-mm Sieve for QC checks Rotary Sample Dividen/Splitter Jaw Crusher 6-mm Sieve for QC checks Sample 1 Jaw Crusher 7 Jaw Crusher 7 Jaw Crusher 7 Jaw Crusher 7	ate Jaw Crush coarse reject de for laboratory and Store (name, DR) ate pulp reject 1.15 pulverize y (Label as sample name DAN BIJIH (PREP_I	(Label as ed for _DA) PART) P_PART)						
	Partial Sample preparation flowchart for drill core condu								

Criteria	Explanation
	• 1999 holes:
	\circ There is no record of laboratory preparation procedures for the six 1999 scout
	drill holes. Only three of these holes intercepted mineralisation and the absence
	of this information is considered of low risk to the 2022 BKZ Resource Estimate.
Quality of	2017-18 holes:
assay data and	 Samples were assayed for gold and multi-element determination by the following
laboratory	procedures at PT Intertek Laboratory Services, Jakarta:
tests	• Gold: Intertek Services Method FA30/AA: 30g fire assay, AAS determination:
	 Sample Assay Charge = 30g
	 FA flux = 150g
	 Digest Method = Fire Assay
	 Analytical method = Atomic Absorption Spectroscopy
	 Lower Detection = 0.01ppm
	 Upper Detection = 50ppm
	 Routine Copper, Lead, Zinc, Silver and Iron Assay: three acid digest, ICP-OES
	Determination:
	 Sample Assay Charge = 0.5g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Optical Emission Spectroscopy
	 Lower Detection = Ag 0.5ppm, Cu 2ppm, Fe 2ppm, Pb 2ppm, Zn 2ppm
	 Upper Detection = Ag 500ppm, Cu 10%, Fe 20%, Pb 10%, Zn 10%
	 Over Range Copper, Lead, Zinc, Silver and Iron Assay: three acid digest, AAS
	determination:
	Sample Assay Charge = 0.25g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Atomic Absorption Spectroscopy
	Lower Detection = Ag 5ppm, Cu 0.01%, Fe 0.01%, Pb 0.01%, Zn 0.01%
	 Upper Detection = Ag 1000ppm, Cu 50%, Fe Max, Pb Max, Zn Max
	• BKM copper standards were inserted into the first 25 assay batches as permitting issues
	delayed the importation of preferred zinc/lead base metal standards into these batches.
	\circ All assay batches for the 10 holes intersecting the Lower Copper Zone copper
	mineralisation ("LCZ") have appropriate certified copper standards included for
	QC evaluation; however the exclusion of zinc and lead standards in these
	batches negates the assessment of assay reliability for the samples from the thin
	zinc/lead domain overlying the copper mineralisation.
	 Nine of the 26 holes drilled into the Upper Polymetallic Zone zinc/lead mineralisation ("UPZ") contain appropriate zinc/lead/silver/gold certified
	standards to assist in assay quality assessment.
	 15 of the twenty-six holes drilled into the UPZ mineralisation to the north of the
	copper mineralisation were analysed without certified zinc/lead/silver standards
	having only the BKM copper standards inserted into assay batches.
	Nominal QC insertion rates (as percentage of routine samples):
	• KSK (Client):
	 Certified Reference Material Standards: 5-6%

Criteria	Explanation
	 Coarse Crush Granite Blanks: 2%
	 Certified Pulp Blanks: 2%
	 Coarse Crush Duplicates: 4%
	 ITS (Laboratory):
	 Certified Reference Material Standards: 6-8%
	 Certified Pulp Blanks: 3%
	 Second Charge Duplicates: 6%
	 Repeat Check Assay Duplicates: 5%
	 Sieve Sizing Analysis (-2mm, -200mesh): 10%
	 Umpire Laboratory Assay Checks are yet to be undertaken.
	Assay quality assessment was undertaken by assessing QC data for evidence of sample
	preparation and analytical contamination (coarse and pulp blanks), analytical accuracy
	(standards), analytical precision (standards, duplicates and repeats) and
	sample/reporting mix-ups (all QC samples). Findings:
	• There is no evidence of sample or reporting mix-ups.
	 Coarse and Pulp blanks show no evidence of contamination. Showart control shorts of client and Laboratory Standards show analytical
	 Shewart control charts of client and Laboratory Standards show analytical accuracy and precision at acceptable levels for reporting of Inferred Resources at
	BKZ for all batches for Cu, Zn, Pb, Ag and Au assays. Of note, the 15 holes where
	appropriate Client Standards were omitted for determining reliability of Zn, Pb,
	Ag and Au assays show acceptable accuracy and precision in the Client Cu
	Standards and the Laboratory Zn, Pb Ag and Au Standards. Verification of the
	robustness of assays from these holes must be confirmed by appropriate
	reassaying/umpire laboratory programmes before resources they underpin can
	be considered for higher resource categories (Indicated and Measured
	Resources, JORC 2012)).
	• Coarse Crush Duplicate and Lab Repeat Duplicate samples show acceptable
	precision for assays underpinning the 2022 BKZ Resource Estimate. Of interest is
	the excellent alignment of duplicate sample Au grades (also observed in the
	2021-22 QC results). This feature of the QC and/or mineralisation requires
	investigation and confirmation before Indicated or Measured Mineral Resources
	be considered for future gold resources at BKZ (JORC, 2012).
	2021-22 holes:
	Samples were assayed for gold and multi-element determination by the following
	procedures at PT GeoServices, GeoAssay Laboratory, Jakarta:
	 Gold: GeoServices Method FAA30: 30g fire assay, AAS determination:
	 Sample Assay Charge = 30g
	 Digest Method = Fire Assay
	 Analytical method = Atomic Absorption Spectroscopy
	 Lower Detection = 0.01ppm
	 Upper Detection = 50ppm
	 Routine Copper, Lead, Zinc, Silver and Iron Assay: GeoServices Method GAI03:
	three acid digest, ICP-OES Determination:
	 Sample Assay Charge = 0.5g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Optical Emission Spectroscopy
	 Upper Detection = Ag 200ppm, Cu 1%, Fe 25%, Pb 1%, Zn 1%

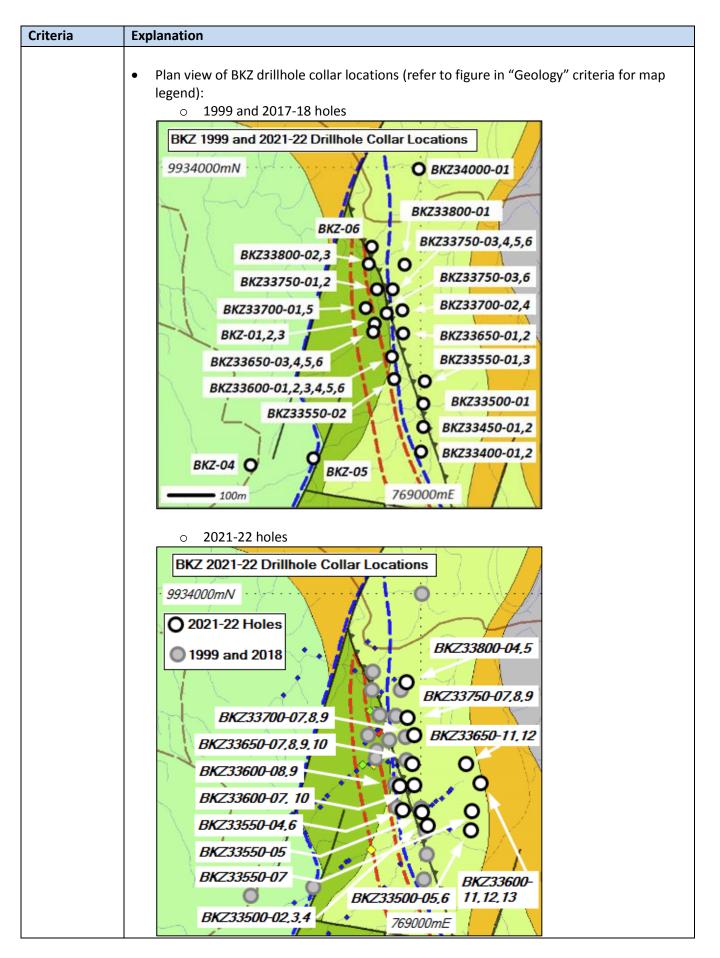
Criteria	Explanation
	• Over Range Copper, Lead, Zinc, Silver and Iron Assay: GeoServices Method
	GOA03: three acid digest, AAS determination:
	 Sample Assay Charge = 0.2g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Atomic Absorption Spectroscopy
	 Lower Detection = Ag 5ppm, Cu 0.01%, Fe 0.01%, Pb 0.01%, Zn 0.01%
	 Upper Detection = Ag 50000ppm, Cu Max, Fe Max, Pb 70%, Zn Max
	 Polymetallic OREAS standards were inserted into all batches (Standard IDs: OREAS [151b,
	620, 621, 905, 906, 907)
	 Nominal QC insertion rates (as percentage of routine samples):
	 KSK (Client):
	 Certified Reference Material Standards: 4-6%
	 Coarse Crush Granite Blanks: 1-2%
	 Certified Pulp Blanks: 4%
	 Coarse Crush Duplicates: 4-6%
	• PT GeoServices (Laboratory):
	 Certified Reference Material Standards: FAA30 4%; GAI03 and GOA03 3%
	 Certified Pulp Blanks: 2%
	 Second Charge Duplicates: 7%
	 Repeat Check Assay Duplicates: Au 5%, ME Assays 10%
	 Sieve Sizing Analysis (-2mm, -200mesh): 10-14%
	 Umpire Laboratory Assay Checks are yet to be undertaken.
	Assay quality assessment was undertaken by Hari Wisnu (KSK staff) and reviewed by
	Duncan Hackman (H&A) who assessed QC reports for evidence of sample preparation
	and analytical contamination (coarse and pulp blanks), analytical accuracy (standards),
	analytical precision (standards, duplicates and repeats) and sample/reporting mix-ups
	 (all QC samples). Findings: The Client Standards and Blanks datasets show evidence of occasional sample
	mix-up or insertion errors.
	 Coarse and Pulp Blanks show no evidence of material carry-over or
	contamination (when results indicating sample mix-up or insertion error are
	omitted from dataset).
	 Shewart control charts of client and Laboratory Standards show analytical
	accuracy and precision at acceptable levels for reporting of Inferred Resources at
	BKZ for all batches for Au, Ag, Cu and Pb assays. The Zn assays show two distinct
	periods of precision and accuracy at GeoServices where:
	 Prior to Batch BKZ030: high variance is observed in high grade Zn
	standards (>1% Zn) and acceptable results for low grade Zn standards
	(<200ppm Zn) and
	 Batches BKZ030 to project completion: low variance and acceptable
	accuracy is observed in high grade Zn standards (>1% Zn) and
	unacceptable low results are observed for low grade Zn standards
	(<200ppm Zn).
	An explanation on the reasons for the two periods is yet to be supplied.
	 Coarse Crush Duplicate samples show acceptable precision for assays
	underpinning the 2022 BKZ Project Evaluation. Of interest is the excellent
	alignment of duplicate sample Au grades (also observed in the 2017-18 QC
	results). This feature of the QC and/or mineralisation requires investigation and
	confirmation before Indicated or Measured Mineral Resources be considered for

Criteria	Explanation								
	 future gold resources at BKZ (JORC, 2012). The GeoServices standards and blanks QC results were presented as graphs when requested from the Lab. Batch ID details are not included. The standards show two periods of precision for all elements of interest, which requires investigation, as the changes in precision may correspond with the observed change in the Zn assays of the KSK inserted standards. H&A suspects that a either an undeclared breach of, or change in protocols has occurred or an instrument has been compromised as these events can result in the sharp changes observed. 								
	 1999 holes: There is no QC data available for the six scout holes drilled in 1999. Only three of these holes intercepted mineralisation in areas where follow-up 2017 drilling confirms the intercepts. The inclusion of the 1999 holes in the dataset for estimating resources at BKM is considered of low risk to the reliability of the Inferred Resources at BKZ. The observed assay QC issues are inhibiting regarding the classification of Mineral Resources and must be addressed, suitably understood and if necessary, the reliability of drillhole assa data reliant on this QC must be established by either additional or alternative assay programmes. The reliability of assay data is however understood to an acceptable level for 								
Verification of sampling and assaying	 the reporting of Inferred Mineral Resources at BKZ. Twin holes, BKZ33600-[02, 04] drilled approximately 4m apart in the LCZ mineralisation show repeatability of the mineralised intercept length and grade tenor as shown in the following table: 								
assaying	following table: Hole From To Interval Cu (%) Au (ppm) Ag (ppm) Fe (%) Pb (%) Zn (%)								
	BKZ33600-02 41.0 43.0 2.0 0.85 0.14 14.85 29 0.10 0.25								
	BKZ33600-04 40.0 42.0 2.0 0.71 0.18 13.75 31 0.15 0.42								
	BKZ33600-02 60.0 88.3 28.3 1.56 0.15 41.40 14 0.22 0.02								
1	BKZ33600-04 58.0 87.5 29.5 1.86 0.15 50.40 14 0.52 0.08								
	BKZ33600-04 58.0 87.5 29.5 1.86 0.15 50.40 14 0.52 0.08 • Three holes, BKZ33600-[05, 07, 09] drilled within 20m of each other in the LCZ mineralisation show comparable mineralised intercept length and grade tenor as shown in the following table: • Hole From To Interval Cu (%) Au (ppm) Fe (%) Pb (%) Zn (%) BKZ33600-05 75.15 100.00 24.85 1.38 0.15 18.78 14 2.72 0.02 BKZ33600-07 79.00 100.00 21.00 1.13 0.23 12.09 22 1.02 0.03 BKZ33600-09 89.00 106.00 17.00 3.94 0.18 69.32 14 6.94 0.03								


Criteria Ex	planation										
	Hole Association	Hole	From	То	Interval	Pb (%)	Zn (%)	Ag (ppm)	Au (ppm)	Cu (%)	Fe (%)
	W drilled; 11m	BKZ33600-01	34.0	38.0	4.0	3.99	9.10	60.42	0.21	0.08	
	separation	BKZ33600-08	36.0	41.5	5.5	4.05	9.59	64.16	0.14	0.13	13.0
	Vertical; 7m	BKZ33600-02	31.0	41.0	10.0	0.42	4.23	10.41	0.15	0.29	15.0
	separation	BKZ33600-06	29.8	40.0	10.2	1.60	4.99	19.08	0.18	0.23	15.0
	E drilled; 11m	BKZ33600-05	36.5	46.0	9.5	0.68	4.90	16.17	0.09	0.11	9.0
	separation	BKZ33600-09	40.0	54.0	14.0	0.59	2.26	19.18	0.04	0.12	10.0
	E-W cross holes	BKZ33650-01	43.0	73.0	30.0		8.75	44.56	0.36	0.34	8.0
		BKZ33650-03	26.0	69.0	43.0	2.72	6.73	30.63	0.49	0.31	10.0
	N-S cross holes	BKZ-3	14.6	47.0	32.4	1.82	4.64	26.23	0.34	0.07	
	W drillo du 12m	BKZ33650-04	15.0	40.0	25.0 39.0		5.99	32.09	0.32	0.20	8.0 9.0
	W drilled; 12m separation	BKZ33700-02 BKZ33700-03	41.0 13.0	80.0 54.0	41.0	2.35 2.45	7.32 6.31	33.03 29.92	0.33	0.18	7.0
	W drilled; 10m	BKZ33750-03	22.5	44.0	21.5	3.86	9.06	365.10	0.30	0.19	9.0
	separation	BKZ33750-06	22.5	33.5	11.0	4.91	11.31	181.34	0.71	0.20	10.0
Location of data •	experie interval attitude impact o 2021-22	compiled in poratory SIF and stored i latasets wer es (both for ertaken and ntrol is by us hole collar boations have a closed loop ncluding RLs lifference for ce that the h (32 holes sh is been used eys have bee	depend files by n a Mine e cross sampl record se of Li pickup e been ely nor o to dr) were r all ho ioles ha iow RL in loca en cond sometre onsecu drilling en 100 eralisat oility of valuatio survey t 2021 ed) imp 02-04] 07, BKZ 2022 a was re t instr	dently y KSK (nesigh scheck e inter ed in V DAR s s. surve th of E illhole check les of ating h ducted es the tive su utilisi m and cion, a f the E on of, instru to 26 ⁶ pacting , BKZ3 233800 eceived	from s (Access t [™] TOI ed and vals ar WGS84 urface yed by KZ and collars ad aga 3.6m b en cor ences co oles in l using n at evo urveys a ng a 1 l 140m ny erroc KZ reso and QC ment w h Octol g on the 3600-C 0-04 th Janua d) how	ite dis ite dis ite dis ite dis RQUE (valida dassa , UTM which PT. Ge travel inst th vetwee rectly i of less the BI a single ery 20r are cor 5m cor , dowr ors in d ource r C check vas ma oer 202 e confie 07, BKZ ary 202 ever th	patch ad abase p databas ted as k y data). Zone 49 conform conform conform conform conform a Leica e LIDAR n the su dentifie than 2m (Z resou e shot e n down bistent cownhol nodel. s on sur lfunctio 21 (whe dence in (33650- 22 (whe ne fault)	dvice sho rocesses e). Prior being tru PS. ns within Giri Jaya m the so TS 09 se topogra id and th n). For s urce mod electroni hole poi with exp l. The do ngth. Gi e survey tveys du ning bet n a repla n a seco was dete	eets and b) and H& r to estim re repress m accept who est puthernr ries instra phic sur RL and the ring colla patial co del. c survey nt. bected d eepest n ven the s will ha ring drill tween the acement e location BKZ3370 nd repla ected an	A (VE nation entation entat able le ablish nost le rumer face a he LID r loca nsiste instru eviation ne peri instru ns for 00-07, ceme d the	BA in the ions evels ed ocated it. and AR RL tions incy ument. ons lised w nimal iods: ument holes nt

Criteria	Explanation
	PT. Geoindo Giri Jaya, when surveying collar locations was asked to pickup the hole collar Azimuth and Dip (by measuring the stick-up portion of a rod inserted into the hole). This measurement was utilised as a check on the correct identification of holes by surveyors. Although this measurement has precision issues, it confirms that the holes impacted by the faulty downhole survey instrument were collared as designed.
	Traces for the holes impacted by the faulty downhole survey instrument have been determined by the collar design azimuth and dip plus downhole exclusion (for random and severe changes over ≥80m) and adjustment of surveys (for sections of holes showing <80m of questionable data). The impact of sample location accuracy for these holes is of low risk to the Inferred Resource Estimate.
Data spacing and distribution	 The BKZ mineralisation has been delineated by 72 diamond drill holes (11, 427m), drilled on nominal 50m sections. Angled holes are drilled between -50 and -75 degrees and 16 are drilled towards 270° grid, 23 holes towards 090°, 3 holes are drilled towards 000° and 3 drilled towards 180°. A further 27 holes are drilled vertically (-80 to -90 degrees). A set of twin holes in each of the UPZ and LCZ domains support grade continuity over short ranges as do two crossed-hole pairs in the UPZ. A further four sets (UPZ) and three sets (LCZ) of holes spaced between 10m and 20m add further support to grade continuity.
	• The drill programme (hole spacing and orientations) has established both broad geological and grade continuity to a degree that supports the classification of Inferred Resources. Infill drilling on the E-W grid and off-grid directional drilling is required to confirm continuity at closer ranges required for upgrading the BKZ resource to Indicated and Measured categories (JORC 2012).
Orientation of data in relation to geological structure	 There has been no physical compositing of sample material prior to assaying. Drilling is oriented favourably for testing the overall geometry of the shallowly easterly dipping mineralised bodies in the UPZ and the flat to shallowly westerly dipping mineralised bodies in the LCZ. The drilling into the LCZ has led to the interpretation of three shallowly easterly dipping mineralised domains which coalesce at 9936600N. It is however possible that the long mineralised intercepts in holes along 9933600N are apparent lengths caused by low angle interception of cross-structures sup-parallel to this section-line. N-S holes are required to test the continuity of mineralisation on this section and results from these may alter the resource estimated in this area. An inferred resource classification for the BKZ resource estimate reflects the level of understanding KSK has in both geological and grade continuity at the current drill orientation and spacing.
Sample security	 Chain of custody procedures and record keeping are employed for all core/sample handling and handover protocols. Numbered sample bag zip-lock ties are utilised to monitor security of samples in transit. ITS and GeoServices have not reported any suspected tampering of samples received at the laboratory. Sample security within the laboratories is not monitored by KSK other than by checking for contamination and sample/reporting mix-up through QA/QC sample insertion and evaluation of their assay results.
Audits or reviews	 No sample audits or reviews were undertaken during the drilling of the BKZ mineralisation.

Criteria	Explanation
Mineral tenement and land tenure status	 PT Kalimantan Surya Kencana (KSK, incorporated in Indonesia) is the 100% owner of the 6th generation Contract of Work (KSK CoW) within which BKZ is located. KSK in turn is owned 75% by Indokal Limited (incorporated in Hong Kong) and 25% by PT Pancaran Cahaya Kahayan (incorporated in Indonesia). Indokal Limited owns 99% of PT Pancaran Cahaya Kahayan with the remaining 1% owned by Mr. Mansur Geiger, held in trust for Asiamet Resources Limited (H&A is yet to sight documentation to confirm this agreement). The parent company to the corporate structure is a Bermuda company, Asiamet Resources Limited (AMR), which is a publically listed company on the AIM (London) stock exchange. AMR owns 100% of the shares in Indokal Limited. KSK has provided the following letter (dated 29th April 2022) listing the current status of the CoW and permitting including the progress in converting it to a Definitive Production License.
	<image/> <image/> <image/> <image/> <text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>


Reporting of Exploration Results

Criteria	Explanation
Exploration done by other parties	• KSK is the only operator to have worked on the BKZ Polymetallic Project.
Geology	 The Beruang Kanan District (BKM, BKZ, BKW and BKS) was mapped in late 2017 to early 2018 by Sean Westbrook of Ore Technics Sdn Bhd, a Malaysian based geological consulting group. The area geology is described as follows: The geology of the Beruang Kanan District consists of a volcano-sedimentary succession of compositionally and texturally diverse dacitic to andesitic volcanics and associated volcaniclastics intercalated with marine sedimentary sequences. The lithostratigraphic associations are consistent with being deposited in a moderate to deep, below wave base submarine setting. The volcano-sedimentary succession is intruded by dioritic-andesitic stocks and dykes of the Sintang Intrusive suite. To the south of BKZ the BKM copper mineralisation is hosted within a sequence of extensive andesitic volcanic lavas and breccias of the Beruang Andesitic Volcanics formation within the footwall zone to the Beruang Thrust. Copper Mineralisation in the Lower Copper Zone at BKZ shows strong similarities to BKM. The BKZ Upper Polymetallic Zn-Pb-Ag mineralisation however is hosted with in the Eastern Volcaniclastics that overly the copper mineralised Beruang Andesite unit. At regional scale both BKM and BKZ Mineralisation is coincident with strong Silica, Sericite-Chlorite-Clay Alteration zones, with higher grades and consistent mineralisation associated with the central Core of Silica Alteration (/-Sericite-Chlorite-Clay Alteration). Mineralisation continuity and tenor decreases away from the central Silica core within the peripheral Sericite-Chlorite-Clay Alteration ("SCC") which can be non-mineralised at distances greater than 200m from the silicified zones. In detail, at BKZ the mineralisation consists of an Upper Polymetallic Zn-Pb-Ag-Au) Zone and a Lower (Cu-Ag) Zone. The Upper Polymetallic Zn-Pb-Ag-Au) Zone and a Lower (Cu-Ag) Zone. The Upper Polymetallic Zn-Pb-Ag-Au) Zone and a Lower (Cu-Ag

riteria	Explanatio	n						
	Hole lo	ocation and grac	les for the r	nodelled in	itervals foll	ow:		
	Tabula	tion of drillhole	location, o	rientation a	and total de	onth:		
	0	1999 and 2017				-pen		
	Ŭ			ollar Locatio	n	Orien	tation	Total
		Hole ID	Easting	Northing	Elevation		Dip	Depth
		BKZ-1	768905.4	9933665.3	270.9	358.0	-60.0	123.1
		BKZ-2	768903.8	9933663.7	270.5	270.0	-60.0	87.1
		BKZ-3	768905.5	9933661.7	271.7	165.0	-60.0	163.4
		BKZ-4	768641.0	9933367.0	371.7	0.0	-90.0	177.5
		BKZ-5	768773.0	9933385.0	319.0	135.0	-70.0	187.8
		BKZ-6	768898.0	9933833.0	267.7	135.0	-70.0	132.2
		BKZ33400-01	769003.4	9933398.6	291.8	270.0	-85.0	129.2
		BKZ33400-02	769002.6	9933398.6	292.1	270.0	-55.0	102.9
		BKZ33450-01	769006.9	9933448.0	278.6	90.0	-80.0	151.5
		BKZ33450-02	769009.4	9933447.9	278.6	270.0	-85.0	147.0
		BKZ33500-01	769008.4	9933499.1	276.8	267.0	-80.0	118.5
		BKZ33550-01	769010.1	9933548.6	275.3	274.6	-83.0	116.7
		BKZ33550-02	768945.0	9933551.5	277.9	90.0	-65.0	122.2
		BKZ33550-03	769012.5	9933548.4	275.9	95.0	-83.0	122.3
		BKZ33600-01	768942.9	9933603.7	269.0	270.0	-55.0	82.4
		BKZ33600-02	768946.0	9933603.9	268.4	90.0	-70.0	89.6
		BKZ33600-03	768946.4	9933601.1	269.0	165.0	-55.0	125.0
		BKZ33600-04	768946.9	9933603.9	268.4	90.0	-69.7	92.1
		BKZ33600-04	768947.7	9933603.9	268.5	90.0	-55.0	115.8
		BKZ33600-06	768946.4	9933603.2	268.6	90.0	-82.0	143.3
		BKZ33650-01	768964.1	9933649.5	280.9	270.0	-60.0	113.0
		BKZ33650-02	768966.8	9933649.6	282.6	180.0	-90.0	117.4
		BKZ33650-02	768904.4	9933651.1	273.2	90.0	-58.0	79.0
		BKZ33650-04	768904.0	9933651.1	273.2	90.0	-90.0	50.0
		BKZ33650-04	768902.1	9933651.2	273.2	270.0	-55.0	40.7
		BKZ33650-06	768901.0	9933652.8	273.2	15.0	-55.0	60.0
		BKZ33700-01	768882.9	9933703.5	273.3	270.0	-60.0	92.2
		BKZ33700-02	768962.4	9933697.4	278.0	270.0	-60.0	113.9
		BKZ33700-02 BKZ33700-03	768932.3	9933690.8	2/6.0	270.0	-80.0	101.3
		BKZ33700-03	768964.1	9933697.4	200.5	270.0	-90.0	101.5
		BKZ33700-04	768885.8	9933703.6	276.2	90.0	-54.9	94.2
		BKZ33700-06	768934.7	9933690.3	266.8	90.0	-65.1	72.0
		BKZ33750-01	768908.1	9933742.1	263.2	270.0	-80.0	82.4
		BKZ33750-01 BKZ33750-02	768909.5		263.2	165.0	-55.0	89.7
		BKZ33750-02		9933740.9				87.5
			768943.7	9933741.0	272.8	270.0	-70.0	
		BKZ33750-04	768945.7	9933741.5	274.0	95.0	-58.6 -60.2	69.5
		BKZ33750-05	768944.4	9933744.9	273.6	290.0		53.5
		BKZ33750-06	768942.1	9933742.2	271.8	290.0	-55.0	53.6
		BKZ33800-01	768966.3 768892.7	9933793.4	288.8	270.0	-65.0	93.3
		BKZ33800-02		9933794.9	262.4	90.0	-55.0	65.0
		BKZ33800-03 BKZ34000-01	768891.6	9933796.0	262.7	267.0	-90.0	50.0
		BKZ34000-01	768998.6	9933997.1	259.6	267.0	-60.0	57.3

0								
0								
	2021-22 hole	s:						
		-						
Г		(Collar Location	1	Orient	tation	Total	
	Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Depth	
	BKZ33500-02	769013.9	9933515.4	285.8	90.0	-75.0	204.4	
	BKZ33500-03	769009.5	9933515.3	285.8	270.0	-65.0	175.9	
	BKZ33500-04	769009.1	9933515.4	285.8	270.0	-50.0	139.6	
	BKZ33500-05	769099.9	9933505.6	306.4	90.0	-85.0	349.5	
	BKZ33500-06	769098.5	9933505.7	305.7	270.0	-85.0	359.0	
	BKZ33550-04	768958.2	9933548.0	273.0	270.0	-85.0	144.6	
	BKZ33550-05	769000.5	9933545.6	275.5	90.0	-55.0	208.5	
	BKZ33550-06	768956.8	9933548.1	273.4	270.0	-60.0	100.5	
	BKZ33550-07	769105.3	9933546.4	324.3	90.0	-80.0	435.5	
	BKZ33600-07	768982.7	9933599.2	272.8	90.0	-65.0	201.0	
	BKZ33600-08	768950.0	9933597.0	269.5	270.0	-60.0	127.9	
	BKZ33600-09	768952.0	9933596.8	269.5	90.0	-50.0	121.8	
	BKZ33600-10	768983.6	9933599.3	273.4	90.0	-50.0	216.0	
	BKZ33600-11	769122.6	9933603.9	337.5	90.0	-85.0	350.0	
	BKZ33600-12	769120.2	9933604.2	337.3	270.0	-80.0	365.0	
	BKZ33600-13	769125.3	9933604.1	337.9	90.0	-70.0	297.5	
	BKZ33650-07	768972.5	9933647.9	285.8	270.0	-85.0	179.2	
	BKZ33650-08	768974.9	9933647.9	287.6	90.0	-75.0	142.2	
	BKZ33650-09	768981.4	9933645.2	289.4	90.0	-53.0	274.5	
	BKZ33650-10	768976.0	9933645.2	287.6	270.0	-65.0	171.5	
	BKZ33650-11	769094.3	9933641.7	334.6	90.0	-85.0	364.0	
	BKZ33650-12	769090.5	9933641.8	334.9	270.0	-80.0	350.0	
	BKZ33700-07	768980.2	9933704.9	284.9	90.0	-80.0	210.1	
	BKZ33700-08	768981.8	9933704.6	285.3	90.0	-60.0	292.8	
	BKZ33700-09	768982.6	9933704.6	285.6	90.0	-50.0	316.5	
	BKZ33750-07	768968.6	9933740.0	287.0	90.0	-80.0	201.6	
	BKZ33750-08	768969.5	9933740.0	287.3	90.0	-60.0	200.4	
	BKZ33750-09	768966.1	9933740.1	285.8	270.0	-80.0	200.0	
	BKZ33800-04	768965.5	9933812.3	286.5	90.0	-80.0	203.6	
	BKZ33800-05	768965.9	9933812.2	286.7	90.0	-60.0	237.5	

assayed gra ○ Up ○ Up	of modelled ade (no high per Polymeta lower c upper c interna enable spatially per Polymeta lower c interna enable spatially wer Copper Z lower c interna addition support	grade allic Zc ut off ut off I diluti additi y supp allic Zc ut off I diluti additi y supp Cone – ut off I diluti nal sa	treat one – $\geq 1\%$ ion of onal s oorted one – $\geq 4\%$ ion of onal s oorted ≥ 0.2 ion of mples	tment Low comb comb f ≥ 0.2 samp d by r d by r a Brec % Cu f ≥ 0.1 s ≥ 0.2): grade bined % cor les ≥1 hearby grade bined % cor les ≥4 hearby cia ar grade % Cu % Cu	inter Zn+P Dbine % Zn- y hole inter Zn+P mbine % Zn- y hole nd Ma y hole	rcepts b grac b d Zn+ +Pb tc s ccepts b grac ed Zn+ +Pb tc s assive porat	: Pb indo be in s: Pb indo be in Sulph ed if r	corpo nclude corpo nclude nide M	rated ed in i rated ed in i 1inera	if neo nterco if neo nterco alisatio o enal	cessar ept or cessar ept or on: ble	ry to hly if ry to hly if
	abulation of	DH gr	ades	for th	e 21 l	holes	inter	ceptin	ng the	сорр	er Inf	erred	
Summary t Resource d				for th					ng the				
									-				Fe (X)
Resource d	omains:	LCZ	(B×SilS	Sulphid	e) (RE	Domai	in 30]		LCZ (M	ISS) (R	E Dom	ain 40]	2
Resource d	Hole BKZ33500-01 BKZ33500-02 BKZ33500-03 BKZ33500-04 BKZ33550-01 BKZ33550-02 BKZ33550-03 BKZ33550-04	LCZ (۲) ال ال ال ال ال ال ال ال ال ال ال ال ال	(ス) (ス) の.2 0.4 0.0	Sulphid (<u>ک</u> 0.1 0.1 0.1	e) (RE (udd) 6y 9 12 11	Domai (udd) 74 0.2 0.1 0.2	in 30] (X) = 4 ¹⁴ ¹⁴ ¹⁴	Cu (x)	LCZ (M	155) (R (X) Z	E Dom (wdd) 64	ain 40) (udd) n y	Fe (%)
Resource d Section 33500	Hole BKZ33500-01 BKZ33500-02 BKZ33500-03 BKZ33500-04 BKZ33550-01 BKZ33550-02 BKZ33550-03	LCZ (X 3 0.6 0.8 15 0.7 10 19 0.9	(X) (X) d 0.2 0.4 0.0 0.1 0.1 1.4 0.3	Culphid C S 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2	e) [RE (wdd) 6y 9 12 11 19 9 38 9 38 9	Domai	in 30) (X) ag 14 15 14 16 17 12 13	(X) 1.5 3.2 2.2 1.6 0.2	LCZ (M 	0.4 0.2 0.1	E Dom (udd) 64 16 14 31 22 2	ain 40) (E dd) ny 0.1 0.2 0.1 0.2 0.1	Fe (X) 17 25 27 30 11

Explanation Summar	y tabulation of	DH gi	rades	for th	ne 47	holes	inter	ceptir	ig the	lead	zinc lı	nferr
	e domains:	0							0			
		UPZ (>1% ar	nd < 4%	(PbZn)	[RE Do	om 10]	UP	Z (>4%	(PbZn)	[RE D	omair
Section	Hole	Cu (X)	Pb (%)	Zn (%)	(mqq) gA	Au (ppm)	Fe (%)	Cu (X)	Pb (%)	Zn (%)	Ag (ppm)	(mqq) uA
33450	BKZ33450-01	0.1	0.3	0.9	22	0.1	8				_	
	BKZ33500-01	0.0	0.8	2.2	5	0.1	10	0.1	2.1	4.9	11	0.1
33500		0.0	0.3	1.8	12	0.0	6	0.1	2.8	8.2	49	0.1
	BKZ33500-05 BKZ33550-01	0.1	0.3	0.8	13 11	0.0	7 25	0.1	1.6	4.4	46	0.1
33550	BK733550-02	0.0	0.1	1.3	5	0.1	11	0.1	1.8	4.6	24	0.1
33350	BKZ33550-04	0.0	0.4	1.2	10	0.0	10	0.0	1.1	3.2	7	0.0
	BKZ33550-06	0.0	0.3	0.8	9	0.0	7	0.4	1.5	5.8	26	0.1
	BKZ33600-01 BKZ33600-02	0.0	0.0	1.2	2	0.2	6 16	0.1	0.6	11.7 6.9	80 14	0.2
	BKZ33600-02	0.0	0.2	2.0	4	0.1	7	0.1	0.0	3.7	5	0.2
	BKZ33600-04	0.0	0.1	1.7	5	0.1	11	0.1	0.3	2.9	7	0.2
33600		0.1	0.8	2.2	20	0.1	8	0.2 0.2	0.5	10.1	10	0.1
	BKZ33600-06 BKZ33600-07	0.1	1.1	2.4	78	0.1	8	1.0	1.6 7.4	5.0 23.1	19 246	0.2
	BKZ33600-08	0.1		E . 7	10	0.1		0.1	4.1	9.6	64	0.0
	BKZ33600-09	0.1	0.3	1.3	18	0.0	10	0.2	1.2	4.1	21	0.1
	BKZ-2	0.1	1.3	1.8	15	0.3		0.2	2.0	6.3	38	0.5
	BKZ-3 BKZ33650-01	0.0	0.5	2.3	7	0.2	8	0.1 0.4	2.2	5.2 10.9	31 59	0.4
	BKZ33650-02	0.2	0.4	1.4	29	0.1	9	0.0	0.5	2.3	10	0.0
	BKZ33650-03	0.1	0.7	1.6	31	0.5	9	0.4	4.2	10.0	42	0.6
33650				45			-	0.2	2.0	6.0	32	0.3
	BKZ33650-05 BKZ33650-06	0.0	0.3	1.5 1.5	6 29	0.2	5 11	0.2 0.1	6.5 2.0	8.2 5.4	26 38	0.2
	BKZ33650-07	0.0	0.3	0.8	9	0.0	9	0.1	1.7	4.1	55	0.0
	BKZ33650-08	0.9	0.7	1.1	40	0.2	17	0.6	5.3	14.2	68	0.2
	BKZ33650-10	0.2	0.2	1.7	8	0.2	8	0.3	1.4	6.3	60	0.3
	BKZ-1 BKZ33700-01	0.1	0.2	1.2	10 61	0.5	7	0.2 0.5	2.7 2.3	8.1 5.9	58 32	0.5
	BKZ33700-02	0.1	0.4	1.9	17	0.2	10	0.2	3.3	10.0	45	0.4
33700	BKZ33700-03	0.1	0.4	1.4	12	0.4	7	0.2	3.9	9.4	40	0.5
33100	BKZ33700-04	0.1	0.7	1.8	41	0.1	5	0.2	2.3	4.4	81	0.2
	BKZ33700-05 BKZ33700-06	0.1	0.3	1.7	11 52	0.6	8	0.4 0.1	3.5 7.3	8.0 13.6	55 454	0.7
	BKZ33700-07				25		12	0.6	4.8			
	BKZ33750-01	0.0	0.8	1.8	25	0.1	7	0.1	3.2	6.4	54	0.3
	BKZ33750-02	0.1	0.4	2.5	29	0.2	9	0.1	3.4	8.8	41	0.4
	BKZ33750-03 BKZ33750-04	0.1	0.9	3.0	15	0.2	4	0.2 0.0	4.2	9.8 3.3	429 38	0.0
33750	BKZ33750-05	0.1	0.4	1.0	7	0.1	9	0.2	3.6	7.3	261	0.4
	BKZ33750-06	0.0	0.6	1.6	22	0.2	8	0.3	6.5	15.0	241	0.9
	BKZ33750-07 BKZ33750-09	0.0	0.5	1.6 1.4	22 15	0.0	6	0.0 0.4	1.2 8.6	2.8	50 143	0.1
	BKZ33750-03	0.1	0.4	1.4	6	0.1	7	0.4	3.8	10.5	42	0.0
33800		0.1	0.9	0.3	52	0.5	10	0.1	4.3	3.9	73	0.2
	BKZ33800-05	0.0	1.3	0.4	27	0.0	5					-
33500	BKZ33500-03 BKZ33500-04	0.0 0.0	0.3	1.6 1.2	5	0.1	11 6	0.1 0.1	2.1	6.6 2.9	22 46	0.1
55500	BKZ33500-04	0.0	0.3	1.1	12	0.0	9	0.1	4.7	10.3	177	0.4
33550	BKZ33550-03	0.1	0.3	2.1	71	0.1	8	0.1	0.7	5.4	267	0.1
55550	BKZ33550-05	0.4	2.1	0.4	1375	2.4	39	0.5	8.4	15.1	167	0.4
33600	BKZ33600-10 BKZ33600-12	0.1	0.9	0.1	113	2.2	6	0.2	12.6 4.3	0.7	137 146	0.3
22055	BKZ33650-09	0.1	0.0	0.1	10	E.C		0.1	2.0	2.9	62	0.3
33650	BKZ33650-12	0.0	1.1	0.6	96	0.3	7	0.4	6.9	0.1	259	0.3
33700		0.1	0.7	1.9	33	0.1	8	1.1	3.8	4.6	87	0.2
33750	BKZ33750-08	0.1	0.4	0.8	31	0.0	7	0.2	1.9	7.0	70	0.1

С Ноlе ВКZ-1 ВКZ-2 ВКZ-2 ВКZ-2 ВКZ-4 ВКZ-4	1	OSITEC From 0.0 3.0 6.0 14.0 34.0 38.0 66.0 6.2 8.2	To 3.0 6.0 14.0 34.0 38.0 66.0	Interval 3.0 3.0 8.0	or all holes drilled at BKZ: Domain [RE Code] Soil-Ox [100] Other [-99]	Cu (%) 0.01	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
ноlе ВКZ-1 ВКZ-2 ВКZ-2 ВКZ-2 ВКZ-2	1	From 0.0 3.0 6.0 14.0 34.0 38.0 66.0 6.2	To 3.0 6.0 14.0 34.0 38.0	Interval 3.0 3.0 8.0	Domain [RE Code] Soil-Ox [100]	0.01				î	Fe (%)
ВКZ-1 ВКZ-2 ВКZ-3 ВКZ-4 ВКZ-4	1	0.0 3.0 6.0 14.0 34.0 38.0 66.0 6.2	3.0 6.0 14.0 34.0 38.0	3.0 3.0 8.0	Soil-Ox [100]	0.01				î	10 (70)
ВКZ-2 ВКZ-3 ВКZ-4 ВКZ-5		3.0 6.0 14.0 34.0 38.0 66.0 6.2	6.0 14.0 34.0 38.0	3.0 8.0					1 U.UI	1	
ВКZ-2 ВКZ-3 ВКZ-4 ВКZ-5		6.0 14.0 34.0 38.0 66.0 6.2	14.0 34.0 38.0	8.0		0.02	0.05	0.16	0.02	6	
ВКZ-2 ВКZ-3 ВКZ-4 ВКZ-5		14.0 34.0 38.0 66.0 6.2	34.0 38.0		UPZ-High Grade [20]	0.26	4.86	9.47	0.56	96.5	
ВКZ-3 ВКZ-2 ВКZ-5	2	34.0 38.0 66.0 6.2	38.0	20.0	UPZ-Low Grade [10]	0.05	0.41	1.25	0.82	13.67	
ВКZ-3 ВКZ-2 ВКZ-5	2	38.0 66.0 6.2		4.0	UPZ-High_Grade [20]	0.22	0.52	6.65	0.37	20	
ВКZ-3 ВКZ-2 ВКZ-5	2	66.0 6.2	0.00	28.0	UPZ-Low Grade [10]	0.09	0.06	1.17	0.16	5.71	
ВКZ-3 ВКZ-2 ВКZ-5	2	6.2	123.1	57.1	Other [-99]	0.03	0.07	0.21	0.01	1.22	
ВКZ-3 ВКZ-2 ВКZ-5	2		8.2	2.0	Sediment_sulphidic [5]	0.01	0.09	0.15	0.06	21	
ВКZ-3 ВКZ-2 ВКZ-5	2	1 0.2	10.2	2.0	UPZ-High Grade [20]	0.12	3.29	8.75	0.8	56	
ВКZ-3 ВКZ-2 ВКZ-5	2	10.2	29.6	19.4	UPZ-Low Grade [10]	0.11	0.75	2.47	0.42	22	
BKZ-4 BKZ-5		29.6	35.6	6.0	UPZ-High_Grade [20]	0.2	0.77	3.75	0.21	19	
BKZ-4 BKZ-5		35.6	41.6	6.0	UPZ-Low_Grade [10]	0.02	1.79	1.1	0.21	8.67	
BKZ-4 BKZ-5		41.6	74.4	32.8	Other [-99]	0.02	0.16	0.48	0.03	1.72	
BKZ-4 BKZ-5		5.8	8.8	3.0	Other [-99]	0.03	0.1	0.34	0.02	2	
BKZ-4 BKZ-5		8.8	13.6	4.8	Sediment_sulphidic [5]	0.01	0.01	0.02	0.02	5.37	
BKZ-4 BKZ-5		14.6	41.0	26.4	UPZ-High_Grade [20]	0.01	2.15	5.21	0.38	30.94	
BKZ-4 BKZ-5		41.0	47.0	6.0	UPZ-Low Grade [10]	0.03	0.45	2.31	0.38	30.54	
BKZ-5	3	47.0	57.0	10.0	Sediment sulphidic [5]	0.03	0.45	1.26	0.17	3.8	
BKZ-5		57.0	80.0	23.0	Other [-99]	0.04	0.23	0.24	0.10	1.24	
BKZ-5		80.0	95.0			0.01	0.01	0.24			
BKZ-5		95.0		15.0 11.0	Breccia_silica_sulphide [23]	0.14	0.02		0.04	2.2	
BKZ-5	4		106.0		LCZ-Silica_Bx [30]			0.24	0.08	3.18	
		70.0	163.0	93.0	Other [-99]	0.01	0.01	0.01	0.01	0.5	
BKZ-(5	164.0	167.0	3.0	Other [-99]	0.01	0.01	0.01	0.01	0.5	
	6	0.0	3.0	3.0	Sediment_sulphidic [5]	0.01	0.02	0.01	0.01	0.5	
		3.0	127.0	124.0	Other [-99]	0.02	0.01	0.06	0.01	0.72	7.0
BKZ3	3400-01	67.0	85.0	18.0	Sediment_sulphidic [5]	0.06	0.53	1.65	0.08	31.34	7.9
		85.0	96.2	11.2	Breccia_silica_sulphide [23]	0.02	0.28	0.27	0.11	7.22	12.6
BKZ3	3400-02	53.0	64.0	11.0	Other [-99]	0.05	0.07	0.2	0.04	10.17	4.6
		68.2	92.0	23.8	Sediment_sulphidic [5]	0.02	0.02	0.05	0.05	2.14	7.4
		56.0	60.0	4.0	Other [-99]	0.01	0.06	0.11	0.01	2.89	2.7
DK72	2450.01	60.0	63.0	3.0	Sediment_sulphidic [5]	0.01	0.05	0.15	0.03	4	6.6
BKZ3	3450-01	63.0	65.0	2.0	UPZ-Low_Grade [10]	0.12	0.27	0.87	0.06	22.35	7.6
		65.0	81.0	16.0	Sediment_sulphidic [5]	0.01	0.04	0.13	0.02	3.31	5.9
		81.0	126.0	45.0	Breccia_silica_sulphide [23]	0.09	0.07	0.02	0.09	5.04	10.2
		57.0	62.0	5.0	Sediment_sulphidic [5]	0.01	0.03	0.1	0.03	2.2	6.1
BKZ3	3450-02	64.7	109.5	44.8	Breccia_silica_sulphide [23]	0.03	0.04	0.06	0.07	2.84	7
		114.9	118.5	3.7	Other [-99]	0.5	0.01	0.03	0.1	2.9	18.7
		48.3	54.5	6.2	Sediment_sulphidic [5]	0.04	0.03	0.11	0.04	2.74	5.8
		54.5	62.5	8.0	UPZ-High_Grade [20]	0.09	2.1	4.94	0.09	10.62	13.7
		62.5	66.5	4.0	UPZ-Low_Grade [10]	0.03	0.78	2.24	0.05	4.78	10.3
		66.5	67.5	1.0	Sediment_sulphidic [5]	0.03	0.14	0.48	0.03	3.1	11.3
BKZ3	3500-01	67.5	68.5	1.0	Breccia_silica_sulphide [23]	0.14	0.03	0.05	0.22	8.9	34.3
		68.5	72.5	4.0	LCZ-Silica_Bx [30]	0.6	0.04	0.14	0.16	10.92	19.1
		72.5	84.5	12.0	Breccia_silica_sulphide [23]	0.14	0.27	0.03	0.15	13.98	11.7
		84.5	87.5	3.0	LCZ-Silica_Bx [30]	0.65	0.59	0.02	0.35	12.47	12
		87.5	105.5	18.0	Breccia_silica_sulphide [23]	0.05	0.01	0.02	0.11	1.14	8.1
		105.5	118.5	13.0	LCZ-Silica_Bx [30]	0.67	0.02	0.01	0.15	3.58	11.8
		67.5	69.0	1.5	Other [-99]	0.01	0.01	0.02	0.01	0.25	3
		69.0	71.8	2.8	Sediment_sulphidic [5]	0.01	0.07	0.21	0.03	5.15	8.1
		71.8	74.0	2.2	UPZ-Low_Grade [10]	0.02	0.33	1.83	0.02	12.24	6.3
		74.0	82.0	8.0	UPZ-High_Grade [20]	0.07	2.83	8.23	0.09	49.02	10.8
		82.0	83.0	1.0	Sediment_sulphidic [5]	0.05	0.04	0.37	0.07	4.3	16.5
		83.0	86.0	3.0	Breccia_silica_sulphide [23]	0.13	0.02	0.05	0.14	5.07	18.8
0.470	2500.00	86.0	88.0	2.0	LCZ-Silica_Bx [30]	1.11	0.02	0.15	0.14	8.4	19
BKZ3	3500-02	88.0	105.0	17.0	Breccia_silica_sulphide [23]	0.21	1.27	0.03	0.11	15.02	11.9
	5550-02	105.0	110.0	5.0	LCZ-Silica_Bx [30]	0.41	0.83	0.02	0.08	16.08	11.1
		1102.0								1	
		1105.0	114.0	4.0	Breccia_silica_sulphide [23]	0.05	0.83	0.01	0.15	11.9	12.4
		110.0	114.0		Breccia_silica_sulphide [23] Breccia silica minor hematite [26]						
		110.0 114.0	114.0 182.5	68.5	Breccia_silica_minor_hematite [26]	0.01	0.41	0.01	0.18	35.25	8.1
		110.0	114.0								12.4 8.1 12.2 5.8

Criteria	Explanatio	on									
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		48.5	58.5	10.0	Sediment_sulphidic [5]	0.03	0.11	0.33	0.02	5.08	5.4
		58.5	59.5	1.0	UPZ-Low_Grade [10]	0.03	0.32	2.08	0.11	5.1	10
		59.5	60.5	1.0	UPZ-High_Grade [20]	0.05	2.05	6.57	0.11	21.6	9.7
		60.5	61.5	1.0	UPZ-Low_Grade [10]	0.03	0.18	1.09	0.12	4.9	12.1
	BKZ33500-03	61.5	65.5	4.0	Sediment_sulphidic [5]	0.69	0.04	0.56	0.23	12.5	24.2
	BK233300-03	65.5	84.0	18.5	Breccia_silica_sulphide [23]	0.1	0.01	0.21	0.1	2.96	8.5
		84.0	85.0	1.0	LCZ-Silica_Bx [30]	0.16	0.02	0.1	0.3	4.7	14
		85.0	97.0	12.0	Breccia_silica_sulphide [23]	0.03	0.01	0.02	0.15	2.36	9.9
		97.0	114.0	17.0	LCZ-Silica_Bx [30]	2.92	0.03	0.04	0.12	17.96	13.9
		114.0	127.0	13.0	Breccia_silica_sulphide [23]	0.14	0.01	0.04	0.08	1.49	8.8
		50.6	52.0	1.4	UPZ-Low_Grade [10]	0.02	0.61	1.23	0.02	9.1	6
		52.0	53.0	1.0	UPZ-High_Grade [20]	0.06	1.59	2.87	0.07	46	5.2
		53.0	64.0	11.0	Breccia_silica_sulphide [23]	0.02	0.05	0.12	0.03	6.39	5.8
		64.0	68.0	4.0	LCZ-Silica_Bx [30]	0.95	0.13	1.31	0.2	26.25	21.5
	BKZ33500-04	68.0	102.0	34.0	Breccia_silica_sulphide [23]	0.09	0.04	0.22	0.12	9.94	11.2
		102.0	109.0	7.0	LCZ-Mass_Sulphide [40]	1.52	0.23	0.38	0.07	16.43	16.6
		109.0	112.0	3.0	Breccia_silica_sulphide [23]	0.11	0.01	0.07	0.04	10.23	6.8
		112.0	125.0	13.0	LCZ-Silica_Bx [30]	0.41	0.01	0.42	0.06	11.86	10.4
		125.0	128.0	3.0	Other [-99]	0.02	0.01	0.04	0.01	5.1	4.4
		0.0	129.0	129.0	Other [-99]	0.01	0.01	0.01	0.01	0.31	2.4
		129.0	131.0	2.0	UPZ-Low_Grade [10]	0.05	0.32	0.83	0.03	12.9	7.4
		131.0	135.4	4.4	Sediment_sulphidic [5]	0.03	0.04	0.24	0.03	7.3	10.1
		140.2	162.5	22.3	Breccia_silica_minor_hematite [26]	0.16	0.5	0.54	0.04	13.89	9.3
	DK200500.05	162.5	168.5	6.0	Breccia_silica_hematite [24]	0.02	0.98	0.01	0.7	47.58	6.8
	BKZ33500-05	168.5	195.5	27.0	Breccia silica minor hematite [26]	0.04	0.25	0.01	0.16	12.23	7.4
		195.5	207.6	12.1	Breccia silica sulphide [25]	0.32	0.1	0.01	0.06	3.12	7.3
		259.5	261.5	2.0	Other [-99]	0.07	0.02	0.01	0.06	1.35	7.8
		271.2	306.5	35.3	Breccia_silica_hematite [28]	0.24	0.52	0.01	0.05	3	6.3
		306.5	349.5	43.0	Other [-99]	0.02	0.01	0.04	0.01	1	5.5
		10.0	117.0	107.0	Other [-99]	0.01	0.01	0.02	0.01	0.37	3.5
		117.0	119.0	2.0	UPZ-High_Grade [20]	0.19	4.67	10.34	0.38	177	7.5
		119.0	124.0	5.0	UPZ-Low_Grade [10]	0.01	0.34	1.14	0.06	12.02	9.2
		124.0	128.0	4.0	Sediment_sulphidic [5]	0.01	0.13	0.41	0.02	7.48	6.9
	BKZ33500-06	128.0	138.0	10.0	Breccia_silica_minor_hematite [26]	0.02	0.17	0.28	0.03	5.95	6.5
		138.0	143.0	5.0	Breccia_silica_hematite [24]	0.01	0.64	0.01	0.33	106.2	4.9
		143.0	198.0	55.0	Breccia_silica_minor_hematite [26]	0.11	0.67	0.01	0.23	31.21	7.2
		198.0	212.1	14.1	Breccia_silica_sulphide [25]	0.5	0.12	0.03	0.05	3.15	7.4
		276.5	359.0	82.5	Other [-99]	0.02	0.01	0.04	0.01	0.52	5.2
		22.0	43.0	21.0	Other [-99]	0.01	0.01	0.02	0.01	0.43	2.6
		43.0	44.0	1.0	Sediment_sulphidic [5]	0.02	0.03	0.11	0.02	4.13	6
		44.0	49.0	5.0	UPZ-High_Grade [20]	0.11	1.56	4.36	0.11	45.69	10
		49.0	51.0	2.0	UPZ-Low_Grade [10]	1.48	0.09	1.08	0.3	10.76	25
		51.0	53.0	2.0	LCZ-Mass Sulphide [40]	1.05	0.33	0.29	0.2	12.5	25
		53.0	63.0	10.0	LCZ-Silica_Bx [30]	0.47	0.04	0.19	0.09	5.81	15.2
		63.0	64.0	1.0	Breccia silica sulphide [23]	0.09	0.01	0.03	0.09	2.64	12
	BKZ33550-01	64.0	70.0	6.0	LCZ-Silica Bx [30]	1.56	0.25	0.26	0.17	13.24	20.1
		70.0	72.0	2.0	LCZ-Mass_Sulphide [40]	5.44	0.07	0.13	0.2	15.5	25
		72.0	83.0	11.0	LCZ-Silica_Bx [30]	1.49	0.06	0.09	0.12	9.29	17.6
		83.0	84.0	1.0	Breccia silica sulphide [23]	0.08	0.02	0.02	0.08	3.46	13.7
		84.0	87.0	3.0	LCZ-Silica Bx [30]	0.48	0.02	0.02	0.09	7.91	14.8
		87.0	98.0	11.0	Breccia silica sulphide [23]	0.48	0.05	0.02	0.03	17.8	14.8
				11.0			0.55				4.2
		98.0	116.7	18.7	Breccia_silica_minor_hematite [26]	0.01	0.15	0.01	0.26	20.51	4.2

	Explanation	on									
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		27.0	35.0	8.0	Sediment_sulphidic [5]	0.07	0.15	0.42	0.02	3.95	5.7
		35.0	37.0	2.0	UPZ-High_Grade [20]	0.03	0.94	2.44	0.02	15.2	9.7
l		37.0	49.0	12.0	UPZ-Low_Grade [10]	0.04	0.23	0.7	0.02	5.29	5.5
		49.0	52.2	3.2	UPZ-High_Grade [20]	0.2	2.63	6.78	0.08	31.97	8.2
		52.2	53.4	1.2	UPZ-Low_Grade [10]	0.03	0.06	1.91	0.16	5.2	16.5
		60.9	68.0	7.1	LCZ-Mass_Sulphide [40]	1.87	0.1	1.18	0.13	15	28.5
		68.0	72.0	4.0	Breccia_silica_sulphide [23]	0.06	0.01	0.05	0.08	1.52	10.1
	BKZ33550-02	72.0	77.0	5.0	LCZ-Silica_Bx [30]	0.51	0.02	0.03	0.07	3.66	11.4
		77.0	81.6	4.6	Breccia_silica_sulphide [23]	0.09	1	0.01	0.13	25.11	9
		82.8	89.0	6.2	LCZ-Mass_Sulphide [40]	2.55	0.38	0.05	0.16	46.73	26.4
		89.0	94.0	5.0	LCZ-Silica_Bx [30]	3.62	1.62	0.05	0.15	52.84	17.7
		94.0	98.0	4.0	Breccia_silica_sulphide [23]	0.2	3.44	0.01	0.2	80.47	5.9
		98.0	103.0	5.0	LCZ-Silica_Bx [30]	1.53	2.55	0.03	0.14	58.18	8
		103.0	113.0	10.0	Breccia_silica_sulphide [23]	0.13	0.07	0.01	0.16	3.93	11.5
		113.0	122.2	9.2	Breccia_silica_minor_hematite [26]	0.01	0.24	0.01	0.27	14.94	2.9
l		39.8	46.0	6.2	Other [-99]	0.01	0.01	0.01	0.01	0.38	3.3
l		46.0	47.0	1.0	Sediment_sulphidic [5]	0.02	0.12	0.27	0.02	7.2	5.8
l		47.0	49.0	2.0	UPZ-Low_Grade [10]	0.12	0.29	2.1	0.11	71.15	8.4
l		49.0	50.0	1.0	UPZ-High_Grade [20]	0.14	0.67	5.44	0.06	267	5.1
l		50.0	51.0	1.0	Sediment_sulphidic [5]	0.25	0.13	0.25	0.07	33	13.2
		51.0	58.0	7.0	LCZ-Mass_Sulphide [40]	1.24	0.07	0.21	0.26	26.39	38.2
		58.0	59.0	1.0	LCZ-Silica_Bx [30]	1.04	0.06	0.15	0.08	5	10.7
	BKZ33550-03	59.0	61.0	2.0	Breccia_silica_sulphide [23]	0.05	0.04	0.01	0.12	3	16.6
		61.0	66.0	5.0	LCZ-Silica_Bx [30]	1.32	0.31	0.21	0.1	9.76	16
		66.0	68.0	2.0	LCZ-Mass_Sulphide [40]	1.91	1.56	0.24	0.13	16.85	22.6
		68.0	78.0	10.0	LCZ-Silica_Bx [30]	0.56	0.39	0.27	0.12	7.3	14.2
		78.0	84.0	6.0	Breccia_silica_sulphide [23]	0.08	0.53	0.01	0.11	4.98	7
		84.0	88.0	4.0	LCZ-Silica_Bx [30]	0.49	0.45	0.01	0.18	14.9	12.3
		88.0	96.2	8.2	Breccia_silica_sulphide [23]	0.14	0.81	0.01	0.14	12.75	10.7
		96.2	122.3	26.2	Breccia_silica_minor_hematite [26]	0.01	0.16	0.01	0.16	14.96	7.9
		17.6	25.0	7.4	Sediment_sulphidic [5]	0.03	0.13	0.39	0.02	3.25	5.2
		25.0	27.0	2.0	UPZ-Low_Grade [10]	0.02	0.46	1.11	0.02	11.3	8.7
		27.0	30.0	3.0	UPZ-High_Grade [20]	0.03	1.19	3.39	0.02	8.57	7.7
		30.0	35.0	5.0	UPZ-Low_Grade [10]	0.07	0.34	1.31	0.04	8.92	10.4
l		35.0	36.0	1.0	UPZ-High_Grade [20]	0.02	0.91	2.97	0.04	5.9	10
		36.0	40.5	4.5	Sediment_sulphidic [5]	0.69	0.03	0.42	0.11	4.7	12.8
l	BKZ33550-04	40.5	41.5	1.0	LCZ-Silica_Bx [30]	0.61	0.04	0.71	0.23	7.1	15.8
l	2.1200000 04	41.5	61.3	19.8	Breccia_silica_sulphide [23]	0.04	0.03	0.12	0.07	1.47	13.9
l		66.4	68.5	2.1	LCZ-Mass_Sulphide [40]	0.2	0.01	0.09	0.05	1.91	11
		68.5	75.5	7.0	Breccia_silica_sulphide [23]	0.02	0.01	0.06	0.03	0.96	13
l		75.5	93.5	18.0	LCZ-Silica_Bx [30]	0.48	0.05	0.22	0.06	3.19	11.7
l		93.5	94.5	1.0	Breccia_silica_sulphide [23]	0.2	0.01	0.15	0.08	1	13.4
		94.5	102.5	8.0	LCZ-Silica_Bx [30]	2.83	0.06	1.01	0.49	10.35	12.1
		102.5	109.0	6.5	Breccia_silica_sulphide [23]	0.03	0.01	0.02	0.01	0.25	5.4
l		77.0	81.0	4.0	Other [-99]	0.04	0.1	0.28	0.03	5.22	3.1
		85.0	100.5	15.5	Sediment_sulphidic [5]	0.31	0.12	0.28	0.08	15.92	11.1
	BKZ33550-05	100.5	114.0	13.5	UPZ-High_Grade [20]	0.48	8.36	15.05	0.36	166.95	17.8
l		114.0	117.0	3.0	UPZ-Low_Grade [10]	0.37	2.09	0.41	2.42	1374.67	39
l		117.0	172.0	55.0	Breccia_silica_hematite [24]	0.13	0.95	0.03	4.12	407.76	23.6
		172.0	193.4	21.4	Breccia_silica_minor_hematite [26]	0.02	0.46	0.07	0.25	39.56	4.8
l		16.5	22.5	6.0	Sediment_sulphidic [5]	0.02	0.07	0.2	0.02	5.8	4.8
l		22.5	30.5	8.0	UPZ-Low_Grade [10]	0.03	0.3	0.8	0.02	8.98	6.5
		30.5	37.0	6.5	UPZ-High_Grade [20]	0.37	1.51	5.76	0.14	25.75	15.8
	BKZ33550-06	37.0	40.0	3.0	Sediment_sulphidic [5]	0.11	0.02	0.26	0.18	2.8	18.1
		40.0	78.0	38.0	Breccia_silica_sulphide [23]	0.02	0.01	0.1	0.06	2.43	10.5
		78.0	82.0	4.0	LCZ-Mass_Sulphide [40]	0.71	0.02	0.26	0.05	4.75	15.1
		82.0	89.0	7.0	Breccia_silica_sulphide [23]	0.19	0.01	0.27	0.04	3.64	10.3

a	Explanatio	on									
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		17.3	147.0	129.7	Other [-99]	0.01	0.01	0.01	0.01	0.33	2.3
		147.0	159.5	12.5	Sediment_sulphidic [5]	0.03	0.02	0.08	0.01	0.89	4.7
		159.5	175.5	16.0	Sediment_sulphidic [5]	0.02	0.03	0.07	0.01	1.42	6.8
		175.5	195.5	20.0	Other [-99]	0.01	0.05	0.02	0.01	3.16	2.6
	BKZ33550-07	195.5	205.5	10.0	Sediment_sulphidic [5]	0.01	0.02	0.02	0.01	1	3.4
		205.5	212.5	7.0	Other [-99]	0.01	0.01	0.01	0.01	0.44	4
		259.0	294.5	35.5	Breccia_silica_hematite [27]	0.04	0.51	0.08	0.31	80.18	8.2
		294.5	357.5	63.0	Breccia_silica_hematite [28]	0.3	0.25	0.01	0.13	22.59	9.9
		357.5	435.5	78.0	Other [-99]	0.02	0.01	0.04	0.01	0.5	5.7
		18.0	34.0	16.0	Sediment_sulphidic [5]	0.01	0.05	0.24	0.02	4.26	5.8
		34.0	37.0	3.0	UPZ-High_Grade [20]	0.1	5.31	11.73	0.21	79.87	10.1
	BKZ33600-01	37.0	38.0	1.0	UPZ-Low_Grade [10]	0.02	0.03	1.22	0.21	2.1	6.2
		38.0	53.0	15.0	Sediment_sulphidic [5]	0.01	0.01	0.03	0.03	0.72	6.2
		53.0	82.4	29.4	Other [-99]	0.03	0.01	0.18	0.01	0.83	9.3
		24.0	31.0	7.0	Other [-99]	0.04	0.14	0.66	0.02	9.98	4.7
		31.0	35.0	4.0	UPZ-Low_Grade [10]	0.08	0.31	2.62	0.14	8.99	13.2
		35.7	39.5	3.8	UPZ-High_Grade [20]	0.57	0.61	6.92	0.19	14.42	15.7
	BKZ33600-02	39.5	41.0	1.5	UPZ-Low_Grade [10]	0.13	0.22	1.73	0.08	4.05	19.2
		41.0	43.0	2.0	LCZ-Mass_Sulphide [40]	0.85	0.1	0.25	0.14	14.85	28.8
		43.0	60.0	17.0	Breccia_silica_sulphide [23]	0.08	0.02	0.11	0.07	3.59	9.7
		60.0	88.3	28.3	LCZ-Silica_Bx [30]	1.56	0.22	0.02	0.15	41.41	13.6
		88.3	89.6	1.3	Breccia_silica_minor_hematite [26]	0.01	0.05	0.01	0.18	37.4	8.5
		36.8	39.0	2.2	Breccia_silica_sulphide [23]	0.01	0.05	0.41	0.01	4.98	4.2
		39.0	43.0	4.0	UPZ-Low_Grade [10]	0.03	0.21	2.03	0.07	3.77	6.6
		43.0	46.0	3.0	UPZ-High_Grade [20]	0.13	0.07	3.68	0.12	5.3	13.4
		46.0	72.0	26.0	Breccia_silica_sulphide [23]	0.13	0.04	0.3	0.08	2.49	12.8
	BKZ33600-03	72.0	76.0	4.0	LCZ-Mass_Sulphide [40]	2.48	0.05	1.42	0.05	10.3	24.5
		76.0 88.0	88.0	12.0	Breccia_silica_sulphide [23]	0.09	0.02	0.1	0.04	2.05	12.3 10.6
		112.0	112.0 113.0	24.0 1.0	LCZ-Silica_Bx [30]	0.33	0.23	0.13	0.08	1.2	7.7
		112.0	121.0	8.0	Breccia_silica_sulphide [23]	2.13	0.01	0.03	0.04	3.88	9.9
		121.0	121.0	4.0	LCZ-Silica_Bx [30] Breccia_silica_sulphide [23]	0.31	0.01	0.11	0.00	0.91	5.1
		33.6	37.6	4.0	UPZ-Low_Grade [10]	0.04	0.21	1.81	0.04	7.45	8.9
		37.6	38.8	1.2	UPZ-High_Grade [20]	0.04	0.32	2.88	0.16	6.7	9.8
		38.8	40.0	1.2	UPZ-Low_Grade [10]	0.04	0.03	1.51	0.06	2.6	12.5
	BKZ33600-04	40.0	42.0	2.0	LCZ-Mass_Sulphide [40]	0.71	0.15	0.42	0.18	13.75	30.7
	51255555 01	42.0	58.0	16.0	Breccia silica sulphide [23]	0.1	0.03	0.42	0.10	3.12	10.2
		58.0	87.5	29.5	LCZ-Silica_Bx [30]	1.86	0.52	0.08	0.15	50.36	14.3
		87.5	92.1	4.6	Breccia_silica_minor_hematite [26]	0.02	0.1	0.01	0.21	36.61	7.4
		35.0	36.5	1.5	Sediment_sulphidic [5]	0.01	0.17	0.44	0.01	23	7.2
		36.5	42.8	6.3	UPZ-Low Grade [10]	0.07	0.79	2.2	0.07	19.51	8.1
		42.8	46.0	3.3	UPZ-High_Grade [20]	0.2	0.47	10.08	0.14	9.75	12
		46.0	47.0	1.0	Sediment_sulphidic [5]	0.07	0.02	0.3	0.2	4.1	25.1
	BKZ33600-05	47.0	48.0	1.0	Breccia_silica_sulphide [23]	0.03	0.03	0.37	0.16	2.9	21.3
		48.0	51.0	3.0	LCZ-Mass_Sulphide [40]	0.55	0.09	0.18	0.16	9.8	20.8
		51.0	75.2	24.2	Breccia_silica_sulphide [23]	0.08	0.6	0.02	0.14	12.06	11.3
		75.2	100.0	24.9	LCZ-Silica_Bx [30]	1.38	2.72	0.02	0.15	18.78	13.9
		100.0	115.8	15.8	Breccia_silica_minor_hematite [26]	0.09	0.89	0.01	0.34	37.63	8.6
		21.8	29.8	8.0	Sediment_sulphidic [5]	0.03	0.15	0.38	0.02	10.63	4.9
		29.8	40.0	10.2	UPZ-High_Grade [20]	0.23	1.6	4.99	0.18	19.08	14.5
		40.0	43.0	3.0	LCZ-Mass_Sulphide [40]	0.57	0.25	0.94	0.1	15.8	15.3
	BKZ33600-06	43.0	52.0	9.0	Sediment_sulphidic [5]	0.02	0.03	0.22	0.05	2.5	9.1
		52.0	119.0	67.0	LCZ-Silica_Bx [30]	1.29	0.11	0.04	0.13	9.9	14.2
		119.0	132.0	13.0	Breccia_silica_sulphide [23]	0.02	0.01	0.02	0.02	0.39	5
		132.0	134.0	2.0	Breccia_silica_minor_hematite [26]	0.01	0.01	0.02	0.01	0.48	4.6
		50.0	53.0	3.0	UPZ-Low_Grade [10]	0.11	1.1	2.43	0.06	78.3	8.1
		53.0	56.0	3.0	UPZ-High_Grade [20]	0.98	7.42	23.07	0.26	246	14.1
	BKZ33600-07	56.0	79.0	23.0	Breccia_silica_sulphide [23]	0.03	0.54	0.03	0.38	33.97	8
		79.0	100.0	21.0	LCZ-Silica Bx [30]	1.13	1.02	0.03	0.23	12.09	21.5
	1	100.0	157.2	57.2	Breccia_silica_minor_hematite [26]	0.02	0.31	0.01	0.33	15.17	12.2

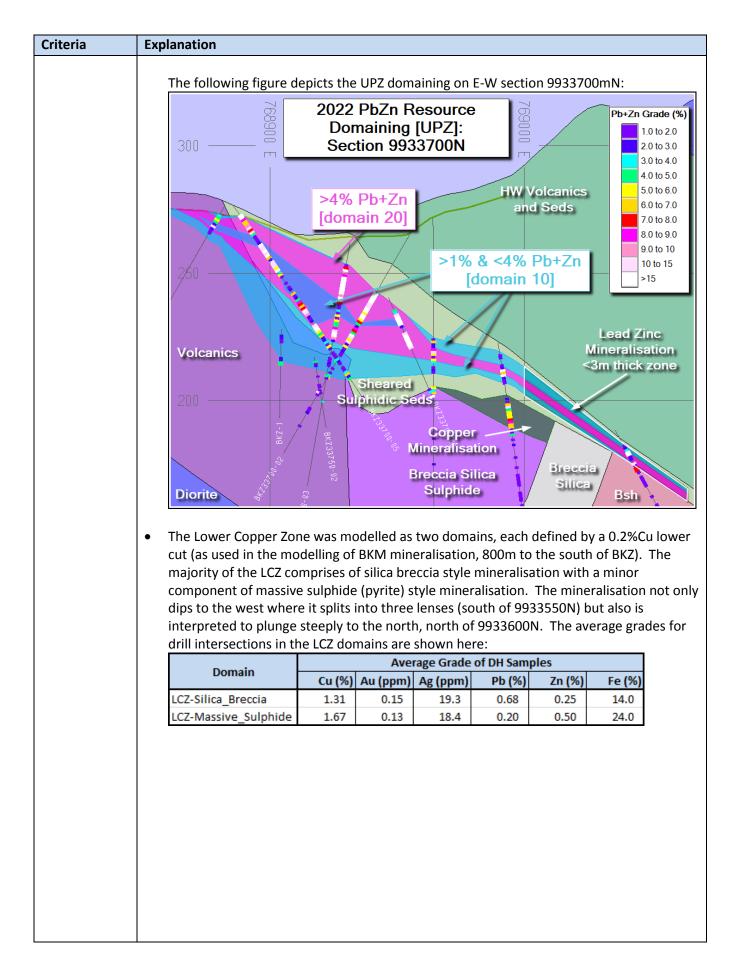
Criteria	Explanatio	on									
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		20.4	36.0	15.6	Sediment_sulphidic [5]	0.02	0.2	0.53	0.01	11.47	5.8
		22.0	31.0	9.0	Sediment_sulphidic [5]	0.03	0.17	0.34	0.02	6.25	3.9
		36.0	41.5	5.5	UPZ-High_Grade [20]	0.13	4.05	9.59	0.14	64.16	12.9
	BKZ33600-08	41.5	49.5	8.0	Breccia_silica_sulphide [23]	0.04	0.06	0.42	0.06	5.09	9.9
		49.5	51.5	2.0	LCZ-Mass_Sulphide [40]	3.92	0.13	1.13	0.08	16.3	25.5
		51.5	61.5	10.0	Breccia_silica_sulphide [23]	0.15	0.02	0.31	0.05	3.41	14.7
		61.5 82.5	82.5 93.0	21.0 10.5	LCZ-Silica_Bx [30] Breccia silica sulphide [23]	0.41	0.08	0.31	0.05	5.38 2.48	13.5 8.7
		39.0	40.0	10.5	Other [-99]	0.07	0.01	0.07	0.02	4.5	2.3
		40.0	49.0	9.0	UPZ-Low_Grade [10]	0.06	0.26	1.25	0.01	17.93	9.5
		49.0	54.0	5.0	UPZ-High Grade [20]	0.23	1.18	4.06	0.07	21.42	11.4
	BKZ33600-09	54.0	89.0	35.0	Breccia_silica_sulphide [23]	0.13	0.79	0.06	0.18	28.96	13.3
		89.0	106.0	17.0	LCZ-Silica_Bx [30]	3.94	6.94	0.03	0.18	69.32	13.6
		106.0	121.8	15.8	Breccia_silica_minor_hematite [26]	0.12	1.94	0.01	0.29	27.27	7.5
		76.5	78.5	2.0	Other [-99]	0.01	0.1	0.2	0.01	3.1	2.7
	BKZ33600-10	78.5	82.5	4.0	Sediment_sulphidic [5]	0.03	0.07	0.16	0.01	5.15	4.6
		82.5	83.5	1.0	UPZ-High_Grade [20]	0.17	12.63	0.71	0.33	137	5.2
		83.5	181.9	98.4	Breccia_silica_hematite [24]	0.24	4.95	0.01	2.45	546.55	9
		61.3 218.0	218.0 225.5	156.7 7.5	Other [-99] Sediment_sulphidic [5]	0.01	0.01	0.01	0.01	0.47	3.1 5.6
	BKZ33600-11	278.4	320.5	42.1	Breccia_silica_hematite [27]	0.02	0.07	0.05	0.05	60.91	4.4
		320.5	350.0	29.5	Breccia_silica_hematite [28]	0.01	0.36	0.01	0.17	48.89	12.7
		50.0	108.0	58.0	Other [-99]	0.01	0.01	0.01	0.01	0.26	2.4
		173.0	176.5	3.5	UPZ-High Grade [20]	1.19	4.31	8.94	0.43	146.14	7.9
		176.5	184.7	8.2	UPZ-Low_Grade [10]	0.05	0.93	0.05	2.23	113.3	5.6
		184.7	185.8	1.2	Sediment_sulphidic [5]	0.08	0.47	0.01	2.14	243	4.1
	BKZ33600-12	185.8	207.0	21.2	Breccia_silica_hematite [24]	0.02	0.18	0.01	1.05	82.71	5.4
		207.0	211.3	4.3	Breccia_silica_minor_hematite [26]	0.01	0.05	0.01	0.25	8.42	7.9
		262.2	319.8	57.6	Breccia_silica_hematite [27]	0.02	0.08	0.01	0.47	16.08	6.8
		319.8	327.2	7.5	Breccia_silica_hematite [28]	0.01	0.13	0.01	0.16	3.57	4.6
		327.2 10.0	365.0 17.0	37.8 7.0	Other [-99] Soil-Ox [100]	0.01	0.01	0.04	0.01	0.42	4.0
		17.0	30.5	13.5	Other [-99]	0.01	0.01	0.01	0.01	0.25	3
		30.5	43.0	12.5	Sediment sulphidic [5]	0.01	0.05	0.11	0.01	2.88	6.4
	BKZ33650-01	43.0	53.0	10.0	UPZ-High Grade [20]	0.19	5.01	11.13	0.51	92.98	11.6
		53.0	61.0	8.0	UPZ-Low_Grade [10]	0.27	0.24	2.87	0.48	13.99	7.6
		61.0	73.0	12.0	UPZ-High_Grade [20]	0.52	1.14	10.68	0.15	24.59	5.4
		73.0	113.0	40.0	Other [-99]	0.02	0.14	0.8	0.05	2.01	5.2
		34.0	35.0	1.0	Other [-99]	0.01	0.01	0.03	0.01	1.9	3
		35.0	40.0	5.0	Sediment_sulphidic [5]	0.05	0.1	0.35	0.05	8.76	5.9
		40.0	43.0	3.0	UPZ-Low_Grade [10]	0.37	0.64	2.01	0.03	33.87	7.5
		43.0 48.0	48.0 59.0	5.0 11.0	UPZ-High_Grade [20] UPZ-Low Grade [10]	0.02	0.1	4.01	0.05	14.54 11.65	6.8 8.3
		48.0 59.0	62.0	3.0	UPZ-High_Grade [20]	0.28	0.03	0.57	0.02	6.33	9.8
	BKZ33650-02	62.0	64.0	2.0	UPZ-Low Grade [10]	0.04	0.59	1.6	0.03	42.25	10.9
		64.0	69.0	5.0	Sediment_sulphidic [5]	0.02	0.01	0.08	0.03	4.94	9.3
		69.0	75.0	6.0	Breccia_silica_sulphide [23]	0.08	0.03	0.93	0.07	3.4	14.6
		75.0	81.0	6.0	LCZ-Silica_Bx [30]	0.97	0.06	0.86	0.2	14.25	24.1
		81.0	109.0	28.0	Breccia_silica_sulphide [23]	0.02	0.02	0.11	0.02	1.01	8.6
		109.0	117.4	8.4	LCZ-Silica_Bx [30]	1.29	0.24	0.02	0.11	5.58	17.9
		11.0	15.0	4.0	Other [-99]	0.01	0.04	0.09	0.02	0.8	3.9
		15.0	26.0	11.0	Sediment_sulphidic [5]	0.01	0.02	0.07	0.02	3.26	5.1
		26.0	27.0	1.0	UPZ-Low_Grade [10]	0.04	0.57	1.52	0.97	71.1	12.6
	BKZ33650-03	27.0	39.0	12.0	UPZ-High_Grade [20]	0.16	7.11	14.38	0.95	63.31	14.9
		39.0	49.0	10.0	UPZ-Low_Grade [10]	0.03	0.66	1.91	0.38	10.55	9.5
		49.0	65.0	16.0	UPZ-High_Grade [20]	0.65	1.32	5.66	0.27	21.33	6.7
		65.0 69.0	69.0 79.0	4.0	UPZ-Low_Grade [10] Sediment_sulphidic [5]	0.21	0.83	1.46 1.3	0.16	9.9	4.8 8.4
		9.0 9.0	79.0 15.0	6.0	Sediment_sulphidic [5]	0.04	0.22	0.21	0.17	4.18	8.4 6.4
	BKZ33650-04	9.0 15.0	40.0	25.0	UPZ-High Grade [20]	0.01	2.02	5.99	0.02	3.73	7.6
	51235030-04	40.0	50.0	10.0	Sediment_sulphidic [5]		0.02	0.12			7.0
		40.0	50.0	10.0	seaiment_suipniäic[5]	0.01	0.02	0.12	0.17	2.73	5

Criteria	Explanatio	on									
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		4.8	9.8	5.0	Other [-99]	0.01	0.03	0.05	0.02	9.66	1.9
		9.8	14.8	5.0	Sediment_sulphidic [5]	0.02	0.07	0.3	0.06	16.42	4.7
	BKZ33650-05	14.8	23.0	8.2	UPZ-High_Grade [20]	0.17	6.54	8.24	0.22	25.7	5.5
		23.0	34.0	11.0	UPZ-Low Grade [10]	0.03	0.27	1.53	0.2	5.88	4.9
		34.0	40.7	6.7	Sediment_sulphidic [5]	0.03	1.9	3.47	0.19	10.77	4.5
		4.0	10.0	6.0	Other [-99]	0.01	0.05	0.2	0.02	8.62	3.9
		10.0	14.0	4.0	Sediment_sulphidic [5]	0.01	0.02	0.09	0.04	5.55	5.6
		14.0	19.0	5.0	UPZ-High_Grade [20]	0.1	2.74	5.93	0.51	52.08	9.4
	BKZ33650-06	19.0	39.0	20.0	UPZ-Low_Grade [10]	0.03	0.62	1.26	0.55	12.81	8.2
		39.0	42.0	3.0	UPZ-High_Grade [20]	0.13	1.32	4.85	0.51	24.4	9.5
		42.0	49.0	7.0	UPZ-Low_Grade [10]	0.87	0.34	1.67	0.58	44.93	13.8
		49.0	60.0	11.0	Breccia_silica_sulphide [23]	0.13	0.03	0.21	0.11	7.13	6.9
		36.0	47.0	11.0	Sediment_sulphidic [5]	0.05	0.19	0.44	0.02	12.79	5.5
		47.0	52.0	5.0	UPZ-High_Grade [20]	0.01	0.77	1.66	0.02	8.54	6.4
		52.0	63.0	11.0	UPZ-Low_Grade [10]	0.03	0.18	0.82	0.02	8.93	8.8
		63.0	65.0	2.0	UPZ-High_Grade [20]	0.17	2.53	6.48	0.32	100.5	10.8
	BK722650.07	65.0	72.0	7.0	Sediment_sulphidic [5]	0.02	0.02	0.11	0.03	5.16	8.8
	BKZ33650-07	72.0	76.0	4.0	Breccia_silica_sulphide [23]	0.07	0.06	1.12	0.06	5.25	12.1
		76.0	81.0	5.0	LCZ-Silica_Bx [30]	1.04	0.09	1.27	0.2	14.84	27
		81.0	107.0	26.0	Breccia_silica_sulphide [23]	0.06	0.02	0.1	0.04	1.44	11.5
		107.0	137.5	30.5	LCZ-Silica_Bx [30]	1.32	0.06	0.03	0.11	5.12	15.2
		137.5	148.0	10.5	Breccia_silica_minor_hematite [26]	0.03	0.07	0.04	0.02	0.93	6.5
		47.4	58.5	11.2	Sediment_sulphidic [5]	0.02	0.2	0.38	0.02	8.88	4.6
	BKZ33650-08	58.5	70.5	12.0	UPZ-High_Grade [20]	0.56	5.25	14.15	0.24	67.64	9.2
		70.5	73.5	3.0	UPZ-Low_Grade [10]	0.92	0.65	1.05	0.16	39.67	17.4
		73.5	79.5	6.0	LCZ-Silica_Bx [30]	0.69	0.09	0.09	0.06	7.5	12.4
		79.5	91.5	12.0	Breccia_silica_sulphide [23]	0.3	0.02	0.04	0.06	3.12	8.4
		91.5	96.5	5.0	LCZ-Silica_Bx [30]	0.7	0.04	0.19	0.38	9.86	13.3
		96.5	100.5	4.0	Breccia_silica_sulphide [23]	0.1	0.01	0.01	0.08	2.33	11.4
		100.5	123.5	23.0	LCZ-Silica_Bx [30]	1.28	0.84	0.1	0.13	18.35	12.4
		123.5	142.2	18.7	Breccia_silica_minor_hematite [26]	0.01	0.24	0.01	0.18	9.86	12.4
		95.2	110.0	14.8	Sediment_sulphidic [5]	0.06	0.03	0.13	0.02	5.43	6
		110.0	119.0	9.0	UPZ-High_Grade [20]	0.09	1.98	2.86	0.25	61.7	7.2
	BKZ33650-09	119.0	131.5	12.5	Breccia_silica_hematite [24]	0.04	1.77	0.03	0.57	117.82	7.6
		131.5	149.5	18.0	Sediment_sulphidic [5]	0.01	0.78	0.02	0.01	2	5.2
		149.5	199.6	50.1	Breccia_silica_hematite [24]	0.06	0.74	0.03	3.09	108.37	7.3
		38.0	39.0	1.0	Other [-99]	0.01	0.01	0.03	0.01	1.9	2.5
		39.0	52.0	13.0	Sediment_sulphidic [5]	0.05	0.03	0.1	0.01	5.07	5.9
		52.0	69.0	17.0	UPZ-High_Grade [20]	0.47	2.14	7.69	0.47	114.06	12.7
	BKZ33650-10	69.0	75.0	6.0	UPZ-Low_Grade [10]	0.36	0.31	1.52	0.19	10.6	9.3
	BK233030-10	75.0	76.0	1.0	UPZ-High_Grade [20]	0.08	0.72	4.93	0.07	6	5.3
		76.0	77.0	1.0	UPZ-Low_Grade [10]	0.13	0.03	1.86	0.15	4.6	6.4
		77.0	130.5	53.5	Breccia_silica_sulphide [23]	0.03	0.11	0.28	0.05	3.01	7.6
		130.5	132.0	1.5	LCZ-Silica_Bx [30]	0.03	0.02	0.16	0.01	1.7	5.3
		47.0	121.5	74.5	Other [-99]	0.01	0.01	0.01	0.01	0.3	2.8
		189.0	195.0	6.0	Other [-99]	0.01	0.01	0.01	0.01	0.29	3.7
		195.0	197.0	2.0	Sediment_sulphidic [5]	0.01	0.19	0.03	0.01	0.25	4
	BKZ33650-11	197.0	208.4	11.4	Sediment_sulphidic [5]	0.12	1.4	1.39	0.18	83.11	5.6
		269.0	324.5	55.5	Breccia_silica_hematite [27]	0.01	0.13	0.01	0.79	26.65	9.2
		324.5	363.0	38.5	Breccia_silica_hematite [28]	0.08	0.57	0.01	0.12	11.19	10.2
		363.0	364.0	1.0	Other [-99]	0.02	0.02	0.03	0.01	1.4	6

Criteria	Explanatio	on	_								
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		38.5	147.0	108.5	Other [-99]	0.01	0.01	0.01	0.01	1.35	2.5
		147.0	155.0	8.0	Sediment_sulphidic [5]	0.02	0.03	0.1	0.04	5.09	5.6
		155.0	160.0	5.0	UPZ-Low_Grade [10]	0.04	1.06	0.58	0.34	96	7.3
		160.0	163.0	3.0	UPZ-High_Grade [20]	0.44	6.91	0.06	0.28	258.67	9
		163.0	165.6	2.6	Sediment_sulphidic [5]	0.01	0.3	0.02	0.03	12.29	5.1
	BKZ33650-12	165.6	197.0	31.4	Breccia_silica_hematite [24]	0.04	1.44	0.03	2.53	252.46	11.7
		197.0	222.6	25.6	Breccia_silica_minor_hematite [26]	0.02	0.19	0.01	0.41	23.82	8.1
		280.5	281.7	1.2	Other [-99]	0.01	0.01	0.01	0.04	0.9	4.4
		281.7	307.1	25.5	Breccia_silica_hematite [27]	0.01	0.12	0.01	0.31	6.6	3.1
		307.1	315.0	7.9	Breccia_silica_hematite [28]	0.05	0.07	0.01	0.05	2.19	6.6
		315.0	350.0	35.0	Other [-99]	0.02	0.01	0.03	0.01	0.72	5.9
		1.8	5.0	3.2	Soil-Ox [100]	0.1	0.07	0.02	1.17	64.59	10.4
		5.0	6.0	1.0	UPZ-Low_Grade [10]	4.31	0.47	3.46	0.39	156	7.6
	BKZ33700-01	6.0	9.0	3.0	UPZ-High_Grade [20]	0.77	1.05	3.67	0.23	36.47	10.7
	BKZ33700-01	9.0	10.0	1.0	UPZ-Low_Grade [10]	0.3	1.06	1.88	0.25	21.8	7
		10.0 11.0	11.0 14.0	1.0 3.0	UPZ-High_Grade [20]	0.24	3.53 0.45	8.05	0.19	26.7 6.23	9.8 7.2
		14.0	92.2	78.2	UPZ-Low_Grade [10] Other [-99]	0.02	0.45	0.06	0.09	0.23	5.7
		14.0	15.2	1.2	Soil-Ox [100]	0.01	0.02	0.00	0.01	0.72	1.5
		15.2	28.0	12.8	Other [-99]	0.01	0.01	0.01	0.01	0.25	3.9
		28.0	39.0	11.0	Sediment_sulphidic [5]	0.01	0.01	0.03	0.01	1.73	5.9
		39.0	41.0	2.0	Breccia_silica_sulphide [23]	0.01	0.03	0.15	0.01	6.8	6.1
	BKZ33700-02	41.0	56.0	15.0	UPZ-High_Grade [20]	0.19	4.73	13.5	0.45	63.37	8.4
		56.0	57.0	1.0	UPZ-Low_Grade [10]	0.07	0.42	2.23	0.39	28.4	10.6
		57.0	66.0	9.0	UPZ-High Grade [20]	0.29	1.79	6.58	0.42	26.11	9.6
		66.0	80.0	14.0	UPZ-Low_Grade [10]	0.11	0.29	1.55	0.14	5.31	8.9
		80.0	113.9	33.9	Other [-99]	0.04	0.14	0.6	0.03	3.34	4.8
	BKZ33700-03	4.8	13.0	8.2	Sediment_sulphidic [5]	0.06	0.07	0.24	0.03	9.77	4.3
		13.0	29.0	16.0	UPZ-High_Grade [20]	0.17	4.15	10.84	0.53	51.6	7.1
		29.0	35.0	6.0	UPZ-Low_Grade [10]	0.06	0.71	1.87	0.57	18.37	7.4
		35.0	43.0	8.0	UPZ-High_Grade [20]	0.18	3.61	7.91	0.42	27.84	7.4
		43.0	54.0	11.0	UPZ-Low_Grade [10]	0.12	0.07	0.98	0.13	6.21	6.8
	-	54.0	101.3	47.3	Other [-99]	0.02	0.1	0.25	0.04	1.49	5.7
		7.0	38.0	31.0	Other [-99]	0.01	0.01	0.01	0.01	0.25	3.9
		38.0	54.0	16.0	Sediment_sulphidic [5]	0.01	0.01	0.03	0.01	2.99	4.1
		54.0	58.0	4.0	UPZ-Low_Grade [10]	0.04	0.83	2.11	0.12	56.55	4.5
	BKZ33700-04	58.0	63.0	5.0	UPZ-High_Grade [20]	0.21	2.26	4.36	0.15	81.16	3.7
		63.0	68.0	5.0	UPZ-Low_Grade [10]	0.09	0.53	1.53	0.07	26.34	5.1
		68.0	73.0	5.0	Sediment_sulphidic [5]	0.04	0.04	0.09	0.06	7.36	8.7
		73.0 0.0	122.0	49.0 4.0	Breccia_silica_sulphide [23] Soil-Ox [100]	0.01	0.15	0.56	0.1	3.52	11.1 10.5
		4.0	4.0 14.0	10.0		0.14	4.5	0.07 6.02	1.04	101.36	10.5
		14.0	14.0	4.0	UPZ-High_Grade [20] UPZ-Low Grade [10]	0.29	0.67	1.39	0.88	101.50	6.9
		14.0	33.0	15.0	UPZ-High_Grade [20]	0.18	4.9	7.55	0.88	50.99	9.9
		33.0	44.0	11.0	UPZ-Low_Grade [10]	0.07	0.35	1.46	0.48	9.84	7.6
	BKZ33700-05	44.0	52.0	8.0	UPZ-High Grade [20]	0.08	2.5	7.65	0.57	23.56	9.6
		52.0	56.0	4.0	UPZ-Low_Grade [10]	0.32	0.28	1.54	0.75	10.55	9.9
		56.0	62.0	6.0	UPZ-High Grade [20]	0.98	2.02	10.61	0.4	45.2	11
		62.0	82.0	20.0	UPZ-Low_Grade [10]	0.11	0.07	2.38	0.25	6.64	8.1
		82.0	94.2	12.2	Sediment sulphidic [5]	0.03	0.07	0.47	0.12	5.98	4.9
		29.0	34.0	5.0	Sediment sulphidic [5]	0.01	0.04	0.08	0.01	6.94	2.8
		34.0	41.0	7.0	UPZ-High_Grade [20]	0.12	5.06	10.17	0.13	776.57	2.4
	BKZ33700-06	41.0	44.0	3.0	UPZ-Low_Grade [10]	0.02	0.22	0.93	0.06	51.8	7.4
		44.0	51.0	7.0	UPZ-High Grade [20]	0.14	9.49	17.11	0.24	131.74	12.4
		51.0	72.0	21.0	Sediment_sulphidic [5]	0.03	0.41	1.55	0.06	13.86	7.5

Criteria	Explanatio	on									
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		30.5	64.3	33.8	Other [-99]	0.01	0.01	0.01	0.01	0.25	2.6
		64.3	67.5	3.3	Sediment_sulphidic [5]	0.01	0.02	0.04	0.01	4.05	4.1
		67.5	73.5	6.0	UPZ-Low_Grade [10]	0.03	0.3	0.8	0.02	11.73	4.8
	BKZ33700-07	73.5	76.5	3.0	UPZ-High_Grade [20]	0.56	4.81	15.69	0.57	149	9
	51253700-07	76.5	79.5	3.0	UPZ-Low_Grade [10]	0.1	0.21	1.61	0.1	38	19.6
		79.5	84.8	5.3	Sediment_sulphidic [5]	0.12	0.14	0.29	0.12	17.81	11.2
		84.8	98.0	13.2	LCZ-Silica_Bx [30]	1.09	2.36	3.14	0.4	47.64	12.5
		98.0	210.1	112.1	Breccia_silica_sulphide [23]	0.14	0.1	0.28	0.09	2.74	6.9
		111.0	115.3	4.3	Other [-99]	0.03	0.04	0.07	0.01	2.99	2.6
		115.3	117.5	2.3	Sediment_sulphidic [5]	0.05	0.1	0.17	0.04	9.66	5.4
	BKZ33700-08	117.5	120.5	3.0 6.0	UPZ-Low_Grade [10]	0.09	0.7	1.86	0.06	33.27	8.3
		120.5 126.5	126.5 214.0	87.5	UPZ-High_Grade [20]	1.08 0.04	0.64	4.58	0.2	87.17 95.82	24.1 14.3
		214.0	278.1	64.1	Breccia_silica_hematite [24]	0.04	0.04	0.02	0.23	7.01	14.5
		178.0	197.0	19.0	Breccia_silica_minor_hematite [26] Other [-99]	0.00	0.06	0.01	0.23	0.31	3.5
		197.0	201.0	4.0	Other [-99]	0.01	0.00	0.01	0.01	1.38	3.2
	BKZ33700-09	201.0	2201.0	19.5	Sediment_sulphidic [5]	0.01	0.03	1.39	0.01	43.61	7
	BRESS/00 05	2201.0	285.8	65.3	Breccia_silica_hematite [24]	0.03	0.25	0.02	0.00	56.35	8.8
		285.8	287.0	1.3	Breccia silica minor hematite [26]	0.03	0.08	0.02	0.44	16.5	11.4
		1.3	4.5	3.3	UPZ-Low Grade [10]	0.04	0.74	1.81	0.14	36.21	4.9
		4.5	8.5	4.0	UPZ-High Grade [20]	0.09	3.15	6.41	0.25	53.53	7.9
	BKZ33750-01	8.5	9.5	1.0	UPZ-Low_Grade [10]	0.03	0.85	1.82	0.05	14	8.6
		9.5	21.5	12.0	Sediment_sulphidic [5]	0.01	0.03	0.07	0.01	3.08	6.8
		21.5	82.4	60.9	Other [-99]	0.01	0.12	0.37	0.01	1.52	6.2
		1.7	3.0	1.3	UPZ-Low Grade [10]	0.06	0.18	3.18	0.08	58.7	8.5
		3.0	10.0	7.0	UPZ-High Grade [20]	0.1	4.72	10.82	0.45	56.09	5.8
		10.0	16.0	6.0	UPZ-Low_Grade [10]	0.05	0.8	2.74	0.29	23.8	9.4
	BKZ33750-02	16.0	26.0	10.0	UPZ-High_Grade [20]	0.12	2.09	6.7	0.31	26.13	9.9
		26.0	28.0	2.0	UPZ-Low_Grade [10]	0.11	0.1	1.69	0.26	5.2	7.7
		28.0	52.0	24.0	Breccia_silica_sulphide [23]	0.12	0.04	0.47	0.13	3.4	7.4
		52.0	89.7	37.7	Other [-99]	0.03	0.09	0.52	0.04	2.23	5.1
		14.5	19.5	5.0	Other [-99]	0.01	0.01	0.02	0.01	0.3	2.7
		19.5	22.5	3.0	Sediment_sulphidic [5]	0.02	0.09	0.29	0.03	7.3	4.9
		22.5	31.5	9.0	UPZ-High_Grade [20]	0.32	5.93	13.13	0.36	817.11	9.1
	BKZ33750-03	31.5	32.5	1.0	UPZ-Low_Grade [10]	0.06	0.91	2.98	0.2	14.6	4.4
		32.5	44.0	11.5	UPZ-High_Grade [20]	0.1	2.49	6.39	0.27	41.84	8.9
		44.0	45.0	1.0	Sediment_sulphidic [5]	0.02	0.26	0.53	0.03	2.5	5.2
		45.0	87.5	42.5	Other [-99]	0.05	0.18	0.58	0.03	2.99	8.5
		49.0	54.0	5.0	Other [-99]	0.01	0.01	0.01	0.01	0.45	1.9
	BKZ33750-04	54.0	59.0	5.0	Sediment_sulphidic [5]	0.01	0.01	0.02	0.01	2	7.1
		59.0	69.5	10.5	UPZ-High_Grade [20]	0.04	1.43	3.27	0.04	37.64	4
		23.0	26.0	3.0	Other [-99]	0.01	0.01	0.02	0.01	0.48	2.5
		26.0	29.0	3.0	Sediment_sulphidic [5] UPZ-High Grade [20]	0.05	0.13	0.38	0.01	6.57	4.8
	BKZ33750-05	29.0 34.0	34.0	5.0	UPZ-High_Grade [20] UPZ-Low Grade [10]	0.3	5.95		0.6	511.62	9.8 9.7
	BK233730-03	36.0	36.0 42.0	2.0 6.0	UPZ-High_Grade [20]	0.04	0.36	0.9	0.12	6.6 10.67	8.4
		42.0	51.0	9.0	UPZ-Low_Grade [10]	0.14	0.53	1.14	0.14	7.54	8.7
		51.0	53.5	2.5	LCZ-Silica Bx [30]	1.37	0.55	0.13	0.07	17.9	8.2
		18.5	22.5	4.0	Sediment_sulphidic [5]	0.01	0.03	0.13	0.07	2.88	6.5
		22.5	30.5	8.0	UPZ-High_Grade [20]	0.01	6.54	14.97	0.89	241.01	10.4
	BKZ33750-06	30.5	33.5	3.0	UPZ-Low_Grade [10]	0.03	0.54	1.56	0.05	22.2	8
		33.5	53.6	20.1	Sediment sulphidic [5]	0.03	0.30	0.75	0.22	4.39	7.3
		61.7	65.0	3.4	Sediment sulphidic [5]	0.03	0.06	0.08	0.07	3.51	6.6
		65.0	67.0	2.0	UPZ-Low Grade [10]	0.02	0.00	1.35	0.01	3.51	5.9
		67.0	74.0	7.0	UPZ-High_Grade [20]	0.02	1.23	2.81	0.02	50	5.2
	BKZ33750-07	74.0	76.0	2.0	UPZ-Low_Grade [10]	0.04	0.92	1.85	0.03	41.5	5.3
	51253750-07	76.0	84.0	8.0	Sediment_sulphidic [5]	0.03	0.32	0.71	0.04	14.16	6.1
		84.0	102.0	18.0	LCZ-Silica Bx [30]	2.35	1.06	1.03	0.04	71.01	13.9
							-				9.2
		102.0	201.6	99.6	Breccia_silica_sulphide [23]	0.15	0.17	0.56	0.12	8.11	9.

Criteria	Explanatio	on									
	Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		87.0	95.0	8.0	Sediment_sulphidic [5]	0.01	0.03	0.07	0.03	9.6	4.3
		95.0 100.0	100.0 103.0	5.0 3.0	UPZ-Low_Grade [10] UPZ-High_Grade [20]	0.06	0.25	0.56	0.02	31.52	7 6.8
	BKZ33750-08	103.0	109.0	6.0	UPZ-Low Grade [10]	0.06	0.56	0.95	0.00	30.53	6.4
		109.0	115.0	6.0	Breccia_silica_sulphide [23]	0.03	0.13	0.07	0.24	12.43	4.3
		115.0	200.4	85.4	Breccia_silica_hematite [24]	0.02	0.6	0.01	0.57	57.74	4.1
		49.5	50.5	1.0	Other [-99]	0.01	0.09	0.53	0.02	3.1	2.6
		50.5 52.5	52.5 55.5	2.0	Sediment_sulphidic [5] UPZ-Low_Grade [10]	0.02	0.04	0.12	0.01	5.55	5.8 7
		55.5	61.5	6.0	UPZ-High_Grade [20]	0.36	8.56	27.73	0.78	143.33	13.7
	BKZ33750-09	61.5	70.5	9.0	UPZ-Low_Grade [10]	0.07	0.54	1.92	0.1	16.65	8.9
		70.5	113.5	43.0	Breccia_silica_sulphide [23]	0.1	0.21	0.66	0.04	6.94	6.1
		113.5	144.8	31.3	Other [-99]	0.09	0.12	0.32	0.01	2.71	5.7
		144.8 43.8	191.6 49.0	46.8 5.2	Breccia_silica_sulphide [23] UPZ-High Grade [20]	0.03	0.02	0.05	0.02	4.97 73.14	5.7
		49.0	58.0	9.0	UPZ-Low_Grade [10]	0.12	0.27	0.88	0.05	5.38	7
	BKZ33800-01	58.0	59.0	1.0	UPZ-High_Grade [20]	0.6	1.92	6.84	0.08	10.7	13.5
		59.0	63.0	4.0	UPZ-Low_Grade [10]	0.57	0.77	1.86	0.02	6.9	6.9
		63.0	93.3	30.3	Other [-99]	0.02	0.06	0.2	0.01	0.68	5.9
	BKZ33800-02	15.7	65.0	49.3	Other [-99]	0.01	0.02	0.04	0.01	1.05	6.8
	BKZ33800-03	2.5 3.5	3.5 50.0	1.0 46.5	Soil-Ox [100] Other [-99]	0.01	0.07	0.27	0.01	1.2	6.5
		3.5 53.5	50.0	46.5	Other [-99] Other [-99]	0.02	0.01	0.03	0.02	0.25	8.6 4.8
		54.9	61.0	6.2	Sediment_sulphidic [5]	0.01	0.01	0.22	0.01	5.35	7
		61.0	63.0	2.0	UPZ-High_Grade [20]	0.13	3.14	7.79	0.06	83.5	5.9
	BKZ33800-04	63.0	66.0	3.0	UPZ-Low_Grade [10]	0.05	0.56	0.58	0.85	64.97	12.3
		66.0	68.0	2.0	UPZ-High_Grade [20]	0.03	5.5	0.04	0.3	62.55	11.8
		68.0	81.0 156.5	13.0 75.5	UPZ-Low_Grade [10]	0.08	1.23 0.13	0.02	0.21	38.05	8 7.8
		81.0 156.5	203.6	47.1	Breccia_silica_sulphide [23] Other [-99]	0.03	0.13	0.02	0.03	0.51	6
		103.2	115.5	12.3	Sediment_sulphidic [5]	0.02	0.13	0.3	0.01	5.2	5.1
		115.5	119.5	4.0	UPZ-Low_Grade [10]	0.04	1.27	0.44	0.03	27.32	5.1
	BKZ33800-05	119.5	122.5	3.0	Sediment_sulphidic [5]	0.01	0.11	0.02	0.01	1.55	4
		122.5 135.5	135.5 237.5	13.0 102.0	Breccia_silica_minor_hematite [26] Other [-99]	0.15	0.82	0.03	0.23	42.02	8 7.1
Data aggregation methods	 Raw assays were used in TIN modelling process. Samples were length weighted to generate 2m composites for resource estimation. High grade 2m composites were identified from log probability plots and their volume of influence restricted in the resource estimation process. Silver grades were cut at 175ppm in the UPZ-Low_Grade domain and at 330ppm in the UPZ-High_Grade domain. [Restriction thresholds and volume of influence parameters are element and domain 										
	depen	dent	. Refe	er to "Es	stimation and modelling te	echniq	jues" c	riteria	section	for deta	ails.]
Relationship					drill hole attitude and inte	•	•				
between	currer	nt low	<i>ı</i> drill	hole nu	umbers for each drill trace	attitu	de. A	ll hole	s show s	imilar te	enor
mineralisation	of grad	de fo	r eacł	n of the	5 estimated elements wit	thin th	ie mod	lelled	domains	5.	
widths and	-				llow dipping UPZ and LCZ						for
ntercept			•		ontrols parallel to the glob				•	-	
•		-			-	-					c
engths	three minera trendi	inter alisat ng su	orete ion d b-par	d doma ue to su allel to	r intercepts on section 993 ins modelled to the south ub-optimal drill hole orien the E-W drill sections. M ken to ensure that the vol	or an tation odellir	appar s with ng of t	ent th respe he LCZ	iickening ct to cro I in the r	g of the oss struct region of	tures f
	• There geome	are n etry c	o obs of the	servable UPZ in	te) drilling is required to re e geological or grade trend the drilling to date. Furth trends/geometries.	ds inte	ernal to	o the s	hallow o		-


Criteria	Explanation
Diagrammes	• Tables and figures relating to drillhole locations, plan and cross section interpretations and tabulated drillhole intercepts inserted into appropriate criteria headings in this table.
Balanced reporting Other substantive exploration data	 Entire sample intervals have been composited and presented in the "Drill hole information" criteria section of this table. Only drillhole and geological mapping data/information is utilised in undertaking the BKZ 2022 Resource Estimate. These dataset are discussed under appropriate criteria headings in this table. KSK has undertaken the following programmes which add further data and information for utilisation in targeting extensions and repeat systems to the BKZ mineralisation: Stream sediment sampling Geophysics: Magnetics Induced Polarisation Eleven holes drilled down dip to the east of the UPZ domain have intercepted zinc and lead mineralisation where predicted within the sheared sulphidic sediment, however these intercepts are not included in the resource estimate as they mostly show thin and highly variable grades and thicknesses (low confidence in geological and grade continuity) at wide spaced intervals. These intercepts are reported in a separate report noting the Exploration Targets in the BKZ area. Four holes drilled to the north of the LC2 intercepted shallow copper mineralisation at 40m to 70m intervals at similar vertical distances from the overlying UPZ. These holes may be intercepting a north striking, easterly dipping copper zone (paralleling the UPZ), however confidence is low for the interpretation that the copper mineralisation continuity is in this plane. All other copper intercepts suggest that continuity is either westerly dipping or northerly plunging. These intercepts are reported in a separate report noting the Exploration Targets in the BKZ area. The 2021-22 drilling identified gold-silver mineralisation within silica-hematite altered volcanics immediately east of the Lower Copper Zone mineralisation. This mineralis
Further work	• Infill and extension drilling is required to update and expand the current mineral resources at BKZ. These activities are discussed further under the "Discussion of relative accuracy/ confidence" criteria below.

Estimation and Reporting of Mineral Resources

Criteria	Explanation		
Database	KSK has provided assurance of data co	overage and integrity by official letter dated 29 th	
integrity	April 2022.		
	Kalimantan Surya Kencana	Head Office: JI. Rajawali VII, Srikandi III No. 100, Palangka Raya, Kalimantan Tengah, Indonesia 73112 T: +62 538 322 4810, F: +62 536 322 9187 E: KSK Kalteng@asiametresources.com	
	PT Kalimantan Surya Kencana		
	Refence No.: 4220/KSK/C-IV/2022	Palangka Raya, 29 April 2022	
	To: Hackmann & Asscociates Pty Ltd Perth – Australia Ph: + 61 8 9473 1160 Fax: +61 8 9473 1161 Mbl: + 61 4 0997 8386		
	Attn: Mr. Duncan Hackman		
	Dear Sir,		
	All data and information utilized in preparing the BK report were supplied by or verified by PT Kalimar representatives who have provided a written assuran complete, accurate, and true and that they have disclo for the assessment of the resources at BKZ.	ntan Surya Kencana personnel and ce that the data supplied is current,	
	Yours sincerely,		
	Giles Andrew Geiger President Director Kalimantan Surya Kencana		
	Representative Office: Gedung Graha Simatupang, Tower 1D 7th Floor, Jl. TB. Simatupang Kav.38, Ja T: +62 21 782 9165, F: +62 21 782 9188 E: KSK.Kalleng@asiametresources.		
	security protocols instil confidence in	and assay Quality Assurance programmes and K the original data validity and integrity. Ire stored in a purpose constructed Access [™]	SK
		y are the responsibility of KSK personnel.	
		hole assay dataset from the site sampling sheets	s
	and the ITS laboratory and GeoService	es SIF files for use in the 2022 BKZ Resource	
		1inesight [™] TORQUE (SQL) database. Prior to	
		RQUE dataset with the KSK dataset and confirme	ed
	that the datasets are identical and un	-	
		eological Consulting reviewed/audited all	
		gainst his observations from core photos and by ta. Mr Creenaune produced a mineralisation-	/

Criteria	Explanation
Criteria Site visits	 control log for H&A to use as a base in constructing the Triangulated Irregular Network models for the BKZ resource estimate. SG (DBD) data was reviewed (2017 measurements) and an additional 316 measurements were undertaken in 2018 to check the original data for sample selection bias. No bias was uncovered. SG samples were selected according to the 2018 protocols throughout the 2021-22 drill programme. All drillhole datasets were subjected to interval checks (missing, overlaps, gaps), element field checks (missing, detection limit conversion, over range assay substitution). Sample locations were verified by cross checking collar survey RL values against LIDAR RL values (for each E-N location). Acceptable agreement instils confidence in drill hole collar locations (49 holes within +/-3m with maximum deviation of 7.8m, except for holes BK233600-11,12,13, drilled from the same platform and differ by 16m). All 1999 and 2018 downhole survey data was reviewed and deviations found to be within acceptable limits for HQ3 diamond drilling utilising a 1.5m barrel. KSK rig set-up surveys (0.00m depth undertaken by compass and inclinometer) were replaced with the 5m downhole survey reading. Nine of the 30 holes drilled in the 2021-22 drilling programme were surveyed with a faulty downhole survey instrument. Collar azimuth and dip pickups confirm that holes were setup as designed and recorded. Surveys were either excluded or adjusted in determining drillhole traces for the impacted holes. Onscreen review showed that three is sufficient confidence in the sample locations from the impacted holes for estimating Inferred Resources at BKZ. Basic statistics confirmed that the VulcanTM compositing routine was correctly employed and executed on the resource dataset in generating the resource accelled as access to Beruang Kanan Camp was blocked by a landslide. Government(s) responses to the COVID pandemic have thwarted attempts to visit the site during the 2021-22 dril
	 recognises the similarities with BKM and has recognised sphalerite and galena in the core photos. H&A is confident that the BKM protocols are appropriate for the BKZ material and that the BKZ mineralisation is appropriately represented in
	the 2022 BKZ Resource Estimate for classification as Inferred Resources.
Geological interpretation	 A summary of the geology and mineralisation is included under the "Geology" category (above). Mr Patrick Creenaune who is an exploration and resource geologist with 40 year's appropriate experience and KSK advisor, provided mineralisation-style logs as the basis for the modelling of the BKZ mineralisation. Down hole intervals were assigned the following logging codes (codes hosting mineralised intervals in bold italics):

	planation								
	Code	Descri	iption		Usage	e Count			
	Bs	Breccia	a silica			8			
	Bsh	Breccia	a silica he	ematite		28			
	Bsmh	Breccia	a silica m	inor hematite		15			
	Bss	Breccio	a silica su	ılphide		38			
	Id	Diorite	2			37			
	Idw	Weath	ered dio	rite		1			
	Ifg	Intrusi	ve fine g	rained		12			
	Sb	Fgr bla	ick sedim	ent		33			
	Sbf	Black s	ed brecc	ia Fault		1			
	Sbm		ent sulph			8	_		
	Sbms			dic sediments		22			
	SVIm			nt /volc/intrusi	ive	4	_		
	SVm		sedimen	nt /volc		9	_		
	V	Volcan				6	_		
	Vb		ed volca			50			
	Vh		ite Volca			8	_		
	Vm		ed Volcan			7	-		
	Vs W	Fgr Vo Weath	lc silica s	ulphide		1 26	-		
	immedi contain	iately be ned almo	elow an ost entii	e upper limit d in most pla rely within a	aces paral n extensiv	neralisati lels the h ve and th	hanging N ick shear	vall su [.] zone	rfac logg
•	immedi contain LCZ is in The Up Zn+Pb r domain breccia	iately be ned almo nterpret per Poly mineral n of $\geq 1\%$ and sili	elow an ost entit ted with ymetalli isation a 5 & <4% ica brec	d in most pla rely within a an opposin c Zone was r and predomi Zn+Pb mine cia style. Th	aces paral n extensiv g dip to th modelled inantly of ralisation e followin	neralisati lels the h re and th ne UPZ ar as two do massive and prec g contac	ion. The hanging v ick shear nd is trur omains, s sulphide dominan	vall su zone ncated a high- style a tly of a	rfac logg by t grad and ande
•	immedi contain LCZ is in The Up Zn+Pb r domain breccia	iately be ned almo nterpret per Poly mineral n of $\geq 1\%$ and sili	elow an ost entin ted with ymetalli isation a 5 & <4% ica brec fferentia	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t	aces paral n extensiv g dip to th modelled inantly of ralisation e followin he two do	neralisati lels the h ve and th ne UPZ ar as two do massive and prec g contaci omains:	ion. The nanging v ick shear nd is trur omains, sulphide dominan t analysi	vall su r zone ncated a high- style a tly of a s table	rface logg by t grad and and dep
•	immedi contain LCZ is in The Up Zn+Pb r domain breccia grade t	iately be ned almo nterpret per Poly mineral n of $\geq 1\%$ and sili	elow an ost entin ted with ymetalli isation a 5 & <4% ica brec fferentia	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t ide >4% total Z	aces paral n extensiv g dip to th modelled inantly of ralisation e followin he two do n+Pb	neralisati lels the h re and th ne UPZ ar as two do massive and prec g contaci omains: Inside >1	ion. The hanging v ick shear nd is trur omains, s sulphide dominan t analysi	vall su r zone ncated a high- style a tly of a s table	rface logg by t grad and and dep
•	immedi contain LCZ is in The Up Zn+Pb r domain breccia grade t	iately be ned almonterpret per Poly mineral n of $\geq 1\%$ and sili enor dif	elow an ost entin ted with ymetalli isation a 5 & <4% ica brec fferentia	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t	aces paral n extensiv g dip to th modelled inantly of ralisation e followin he two do n+Pb	neralisati lels the h re and th ne UPZ ar as two do massive and prec g contaci omains: Inside >1	ion. The hanging v ick shear nd is trur omains, s sulphide dominan t analysi	vall su zone ncated a high- style a tly of a s table	rface logg by t grad and and dep
•	immedi contain LCZ is in The Up Zn+Pb r domain breccia grade t	iately be ned almo nterpret per Poly mineral n of $\geq 1\%$ and sili enor dif	elow an ost entir ted with ymetalli isation a 5 & <4% ica breck fferentia 	d in most pla rely within a an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t ide >4% total Z Average Gr	aces paral n extensiv g dip to th modelled inantly of ralisation e followin he two do n+Pb ade Split by	neralisati lels the h ve and th ne UPZ ar as two do massive and prec g contaci mains: Inside >1	ion. The nanging v ick shear omains, s sulphide dominan t analysi % and <4%	vall su zone ncated a high- style a tly of a s table ttotal Z t	rface logg by t grad and and dep
•	immedi contain LCZ is ir The Up Zn+Pb r domain breccia grade t	iately be ned almonterpret per Poly mineral of $\geq 1\%$ and sili enor dif	elow an ost entir ted with ymetalli isation a 5 & <4% ica breck fferentia 	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t ide >4% total Z Average Gr -4 -3	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1	neralisati lels the h ve and th ne UPZ ar as two do massive and prec g contaci mains: Inside >1 Metres fro 1 1.7	ion. The nanging v ick shear omains, a sulphide dominan t analysi % and <4% om Contac 2 3	vall su zone ncated a high- style a tly of a s table ttotal Z t 4 0.6	rface logg by t grac and ande dep n+Pb
•	immedi contain LCZ is in The Up Zn+Pb n domain breccia grade t Elem Zn (iately be ned almonterpret per Poly mineral of $\geq 1\%$ and sili enor dif	elow an ost entin ted with ymetalli isation a 5 & <4% ica brect fferentia 	d in most play rely within a an opposing c Zone was r and predomi Zn+Pb mine cia style. The al between t ide >4% total Z Average Gr -4 -3 8.5 10.5 3.8 5.4	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1 9.0 6.6	neralisati lels the h ve and th ne UPZ ar as two do massive and prec g contaci mains: Inside >1 Metres fro 1.7 0.4	ion. The nanging v ick shear omains, s sulphide dominan t analysi % and <4% om Contac 2 3 1.2 1.6	vall su zone ncated a high- style a tly of a s table 6 total Z t 4 0.6 0.1	rfac logg by t grac and ande dep n+Pb
•	immedi contain LCZ is in The Up Zn+Pb n domain breccia grade t Elem Zn (Pb)	iately be ned almo nterpret per Poly mineral n of ≥1% and sili enor dif nent (%) (%) (%)	elow an ost entin ted with ymetalli isation a 5 & <4% ica breck fferentia 	d in most play rely within a an opposing c Zone was read predomi Zn+Pb mine cia style. The al between t ide >4% total Z Average Gro- 4 -3 8.5 10.5 3.8 5.4 8.8 50.1	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1 9.0 6.6 3.0 2.2	neralisati lels the h re and th ne UPZ ar as two do massive and prec g contact mains: Inside >1 Metres fro 1 1.7 0.4 23.3 1	ion. The nanging v ick shear nd is trur omains, sulphide dominan t analysi % and <4% om Contac 2 3 1.2 1.6 0.3 0.3	vall su zone ncated a high- style a tly of a s table t t t 4 0.6 0.1 9	rfac logg by t grad and dep <u>n+Pb</u> 2. 0.
•	immedi contain LCZ is in The Up Zn+Pb n domain breccia grade t Elem Zn (Pb (Ag (p Au (p The foll	iately be need almo- nterpret per Poly- mineral of $\geq 1\%$ and sili- enor dif enor dif (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	elow an ost entin ted with ymetalli isation a 5 & <4% ica breck fferentia 	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. The al between t ide >4% total Z Average Gr -4 -3 8.5 10.5 3.8 5.4 8.8 50.1 0.48 0.48 analysis tabl n and interva	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1 9.0 6.6 3.0 2.2 45.1 33.5 0.46 0.29 e depicts als not do tal Zn+Pb	neralisati lels the h ve and th ne UPZ ar as two do massive and prec g contactor mains: Inside >1 1.7 0.4 23.3 1 0.20 0 the distin mained: Out	ion. The nanging v ick shear omains, a sulphide dominan t analysi % and <4% om Contac 2 3 1.2 1.6 0.3 0.3 6.2 10.0 1.17 0.19 nct grade	vall su zone ncated a high- style a tly of a s table t t 4 0.6 0.1 10.9 0.26 e tenor	rfac logg by t grad ande ande dep
•	immedi contain LCZ is in The Up Zn+Pb n domain breccia grade t Elem Zn (Pb (Ag (p Au (p The foll the \geq 19	iately be need almo- nterpret per Poly- mineral of $\geq 1\%$ and sili- enor dif enor dif (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	elow an ost entin ted with ymetalli isation a 5 & <4% ica breck fferentia 	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t ide >4% total Z Average Gr -4 -3 8.5 10.5 3.8 5.4 8.8 50.1 0.48 0.48 analysis tabl n and interva	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1 9.0 6.6 3.0 2.2 45.1 33.5 0.46 0.29 e depicts als not do tal Zn+Pb	neralisati lels the h ve and th ne UPZ ar as two do massive and prec g contactor mains: Inside >1 1.7 0.4 23.3 1 0.20 0 the distin mained: Out	ion. The nanging v ick shear omains, a sulphide dominan t analysi % and <4% om Contac 2 3 1.2 1.6 0.3 0.3 6.2 10.0 1.17 0.19 nct grade	vall su zone ncated a high- style a tly of a s table 6 total Z t 4 0.6 0.1 10.9 0.26 e tenor omains	rfac logg by t grad ande ande dep
•	immedi contain LCZ is in The Up Zn+Pb n domain breccia grade t Elem Zn (Pb (Ag (p Au (p The foll the \geq 19	iately be need almonterpret per Poly mineralion of $\geq 1\%$ and sili enor dif nent (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	elow an ost entine ted with ymetalli isation a 5 & <4% ica breck fferentia Ins -5 9.9 3.6 42.9 4 0.46 0 contact b domain Inside >	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t ide >4% total Z Average Gr -4 -3 8.5 10.5 3.8 5.4 8.8 50.1 0.48 0.48 analysis tabl n and interva 1% and <4% to Average Gr	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1 9.0 6.6 3.0 2.2 45.1 33.5 0.46 0.29 e depicts als not do tal Zn+Pb ade Split by	neralisati lels the h ve and th ne UPZ ar as two do massive and prec g contaci mains: Inside >1 Metres fro 1 0.20 0 the distin mained: 0 uthe distin	ion. The nanging v ick shear omains, i sulphide dominan t analysi % and <4% om Contac 2 3 1.2 1.6 0.3 0.3 6.2 10.0 .17 0.19 nct grade	vall su zone ncated a high- style a tly of a s table <u>6 total Z</u> t <u>4</u> 0.6 0.1 10.9 0.26 e tenor omains t <u>4</u>	rfac logg by t grad ande ande dep
•	immedi contain LCZ is in The Up Zn+Pb r domain breccia grade t Elem The foll the ≥ 19 Elem	iately be ned almo nterpret per Poly mineral o of ≥1% and sili enor dif nent (%) (%) ppm) ppm) lowing o % Zn+Pb nent	elow an ost entin ted with ymetalli isation a 5 & <4% ica breck fferentia Ins -5 9.9 3.6 42.9 4 0.46 0 contact b domain Inside > -5 2.4	d in most pla rely within a n an opposin c Zone was r and predomi Zn+Pb mine cia style. Th al between t ide >4% total Z Average Gr -4 -3 8.5 10.5 3.8 5.4 8.8 50.1 0.48 0.48 analysis tabl n and interva 1% and <4% to Average Gr -4 -3	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1 9.0 6.6 3.0 2.2 45.1 33.5 0.46 0.29 e depicts als not do tal Zn+Pb ade Split by -2 -1	neralisati lels the h re and th ne UPZ ar as two do massive and prece g contactor mains: Inside >1 0.4 23.3 1 0.20 0 the distin mained: Out Metres fro 1 0.3	ion. The nanging v ick shear nd is trur omains, i sulphide dominan t analysi % and <4% om Contac 2 3 1.2 1.6 0.3 0.3 6.2 10.0 1.17 0.19 nct grade tside All dom Contac 2 3	vall su zone ncated a high- style a tly of a s table t t 4 0.6 0.1 0.26 e tenor omains t 4 0.26	rfac logg by t grad ande dep n+Pb 2. 0. 14. 0.2
•	immedi contain LCZ is in The Up Zn+Pb r domain breccia grade t Elem Zn (Pb (Ag (p Au (p Au (p The foll the ≥19	iately be ned almo nterpret per Poly mineral o of ≥1% and sili enor dif nent (%) (%) ppm) lowing o % Zn+Pb nent	elow an ost entin ted with ymetalli isation a 5 & <4% ica breck fferentia 	d in most play rely within a n an opposing c Zone was r and predomi Zn+Pb mine cia style. The al between t ide >4% total Z Average Gr -4 -3 8.5 10.5 3.8 5.4 8.8 50.1 0.48 0.48 analysis table n and interva e1% and <4% to Average Gr -4 -3 1.3 1.7 0.4 0.3	aces paral n extensiv g dip to the modelled inantly of ralisation e followin he two do n+Pb ade Split by -2 -1 9.0 6.6 3.0 2.2 45.1 33.5 0.46 0.29 e depicts als not do tal Zn+Pb ade Split by -2 -1 1.6 2.1	neralisati lels the h re and th ne UPZ ar as two do massive and prec g contactor mains: Inside >1 0.4 23.3 1 0.20 0 the distin mained: 0.4 0.3 0.1	ion. The nanging v ick shear omains, i sulphide dominan t analysi % and <4% om Contac 2 3 1.2 1.6 0.3 0.3 6.2 10.0 1.17 0.19 nct grade tside All de om Contac 2 3 0.4 0.4	vall su zone ncated a high- style a tly of a s table t t 4 0.6 0.1 10.9 0.26 e tenor omains t 4 0.5 0.2	rfac logg by t grad ande dep n+Pb 2. 0. 14. 0.2

Criteria	Explanation
	The following figure depicts the LCZ domaining on E-W section 9933550mN:
	2022 Copper Resource Domaining [LCZ]: Section 9933550N
	HW Volcanics and Seds Sheared Sulphidic Seds HW Volcanics 0.3 to 0.4 0.4 to 0.5 0.5 to 0.6 0.6 to 0.7 0.7 to 0.8
	250 Volcanics
	Breccia Sílica Sulphide Diorite
	200 Sulphidic breccia [domain 30]
	A longsection view of the domains is presented in the "Dimension" Criteria section. This longsection shows the relationship between the UPZ and the LCZ and a coalescing or thickening of the LCZ domains along section line 9933600mN. This thickening of the copper mineralisation may be due to either better development of the silica brecciation in or near the source of the mineralisation or to structural interplay between the sub-horizontal structures and possible sub-vertical structures that parallel the drilling grid direction. The domaining along 9933600mN has been undertaken with consideration for both interpretations, however the geometry and volume of the interpreted mineralisation may change significantly in this area with further drilling designed to test the hypotheses.
	Isolated (unsupported) copper intercepts in holes BKZ33700-07 and BKZ33750-[07, 09] cannot be readily modelled and have been incorporated with the Exploration Target reporting titled "Explanatory Notes: BKZ 2022 Base Metal and Gold-Silver Exploration Targets, procedures, observations and outcomes; presented according to the JORC TABLE 1 checklist of the JORC Code (2012)". Mineralisation in these intercepts is not reported in the BKZ Polymetallic 2022 Resource Estimate.
Dimensions	 BKZ mineralisation is centred on 768950E, 9933700N (UTM, Zone 49S). The mineralisation has been delineated over a strike length of 350m (towards 000^o), across a width of 250m and to a depth of 175m below surface. The UPZ mineralisation outcrops to the west and is open to the north and east (where 11 holes have encountered thin high grade lead zinc intercepts (<3m) confirming exploration potential). The LCZ

Criteria	Explanation
	 mineralisation remains open at depth in the central area of BKZ. The depth extension and/or repetition potential of mineralisation has been tested to the east, below a footwall diorite sill where gold mineralisation was encountered, however the depth extension/repetition has not been fully tested, with areas immediately below mineralisation and volumes to the north, south and west still considered prospective. The following figure depicts the mineralisation distribution along strike and the spatial relationship between the UPZ and LCZ, where the bulk of these bodies are separated, however a thin domain of UPZ mineralisation is positioned immediately above the LCZ:
	Image: Section Control of the section of the secti
Estimation and modelling techniques	 The BKZ 2022 Resource Estimate was undertaken utilizing Minesight[™] software for domaining utilising triangulated irregular network models ("TIN") and Vulcan[™] software for block modelling ("BM") and inverse distance squared grade interpolation ("ID2"). Resource domaining was undertaken at threshold grade cuts determined by statistical and spatial analysis/observations. Four domains were identified and TIN models constructed to guide grade interpolation. These are: BKZ_10_solid_ZnPb-1: UPZ low grade mineralisation (≥1% and <4% Zn+Pb) BKZ_20_solid_ZnPb-4: UPZ high grade mineralisation (≥4% Zn+Pb) BKZ_30_Solid_QSBX: LCZ quartz silica breccia mineralisation (≥0.2% Cu) BKZ_40_Solid_MPY : LCZ massive sulphide (pyrite) mineralisation (≥0.2% Cu) Contact and grade distribution analyses of these domains shows the significant grade tenor differentials and that the domaining has been undertaken as intended (refer to tables in the "Geological interpretation" criteria section). Figures displaying cross-sections of the domains are included in the "Geological interpretation and Dimensions" criterion sections. Both the 2m composites and the block model were coded by the numbers 10, 20, 30 or 40 as stated in the nomenclature for the domain within which they are located.

	lanation							
	The bloc	k model	was also coded	by the bro	ad geological units:			
	0	Solid c-B	3KZ_SulphidicSe	d 2022032	22 RE-5			
	0	Solid e-E	3KZ_Bss1_20220		3			
		_	KZ Bs 2022032	_				
		_	3KZ_Bsh1_20220	_	4			
			3KZ_Bss2_20220	_				
		_	KZ Bsmh 2022(_				
		_	3KZ_Bsh2_20220	—				
			KZ_Bsh2_20220	_				
		_		—	, ig tonnage factors to	the reco	urco bloc	-12
			iis were utilised	III assignin	ig connage factors to	the resol		.К
	mod							
		-			ing resources (the sel			-
		-		-	andardised lengths w	-	-	ne
	•		•	•	clustering effect)). A			
	-				posite lengths will be	•		
					spatial distribution is			
	resource	e is being	considered for	higher cate	egories than Inferred	classifica	ition (JOI	RC,
	2012).							
		Δσ grad	es in 2m compo	sites were	cut before grade inte	rpolatior	n. These	were
•	Extreme	AS SIGU	es in zin compo.					
•			•		-	•		
•	0	Domain 1	10: 4 composites	s >175ppm	cut to 175ppm			
•	O Log prot for each from the	Domain 2 Domain 2 Dobility p domain e observe	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po	s >175ppm es >330ppi omposite c es identifie opulation c	a cut to 175ppm m cut to 330ppm lata were generated f ed (extreme grades th listribution). The foll	for Cu, Zr nat deviat owing re	te signific strictions	cantly s, cut
•	O Log prot for each from the and upp	Domain 2 Domain 2 Domain 2 domain e observe er thresh	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po	s >175ppm es >330ppi omposite c es identifie opulation c ed to restr	a cut to 175ppm m cut to 330ppm lata were generated f ed (extreme grades th listribution). The foll ict the influence of ex	for Cu, Zr nat deviat owing re	te signific strictions	cantly s, cut
•	O Log prok for each from the and upp from im	Domain 2 Domain 2 Dobility p domain e observe er thresh pacting o	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po nolds were appli	s >175ppm es >330ppi omposite c es identifie opulation c ed to restr	a cut to 175ppm m cut to 330ppm lata were generated f ed (extreme grades th listribution). The foll ict the influence of ex	for Cu, Zr nat deviat owing res ktreme gr	te signific strictions	cantly s, cut nposit
•	O Log prot for each from the and upp	Domain 2 Domain 2 Dobility p domain e observe er thresh pacting o	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper \log_{10} point holds were appli- on blocks at dista	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t	a cut to 175ppm m cut to 330ppm lata were generated t ed (extreme grades th listribution). The foll- ict the influence of ex their location:	for Cu, Zr nat deviat owing res ktreme gr	te signific strictions rade com	canth s, cut nposi lius (m
•	O Log prok for each from the and upp from im	Domain 2 Domain 2 Dobility p domain e observe er thresh pacting o	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po nolds were appli- on blocks at dista	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut	a cut to 175ppm m cut to 330ppm lata were generated f ed (extreme grades th listribution). The foll ict the influence of ex their location: High Grade Restriction	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest	te signific strictions rade com	cantly s, cut nposit lius (m R
•	O Log prok for each from the and upp from im	Domain 2 Domain 2 Dobility p domain e observe er thresh pacting o Domain 10 20	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm)	a cut to 175ppm m cut to 330ppm lata were generated to d (extreme grades the listribution). The foll- ict the influence of ex- their location: High Grade Restriction Threshold (ppm)	for Cu, Zr nat deviat owing re ktreme gr Cut/Rest North	te signific strictions rade com riction Rad East	cantl ⁱ s, cut nposi lius (m R 2
•	O Log prot for each from the and upp from im Element	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 10 20 30, 40	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to ed (extreme grades the listribution). The follo ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50	te signific strictions rade com riction Rad East 50 50 50 50	cantl s, cut nposi lius (m R 2 2 2 2
•	O Log prot for each from the and upp from im Element	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 10 20 30, 40 10	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm data were generated f ed (extreme grades th distribution). The foll- ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50 50	te signific strictions rade com riction Rad East 50 50 50 50 50	cantly s, cut nposi lius (m R 2 2 2 1
•	Cog prob for each from the and upp from im Element	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 10 20 30, 40 10 20	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to ed (extreme grades the listribution). The follo ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70	for Cu, Zr nat deviat owing res ktreme gr Ktreme gr Cut/Rest North 50 50 50 50 50 50 50 25	te signific strictions rade com riction Rad East 50 50 50 50 25	cantly s, cut nposi lius (m R 2 2 2 2 1 1
•	Cog prob for each from the and upp from im Element Ag Au	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 10 20 30, 40 10 20 10, 20*	10: 4 composites 20: 11 composite lots of the 2m co and outlier valu ed upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to d (extreme grades the distribution). The foll- ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8 0.8	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50 50 50 50 25 25	te signific strictions rade com riction Rad East 50 50 50 50 50 25 25	canth s, cut nposi lius (m R 2 2 2 2 1 1 1 1
•	Cog prob for each from the and upp from im Element	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 10 20 30,40 10 20 10,20* 10,20*	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to d (extreme grades the distribution). The foll- ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8 0.8 0.8 4000	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50 50 50 50 50 50 50 50 50 50 50	te signific strictions rade com riction Rad East 50 50 50 50 50 25 25 50 50	cantly s, cut nposi lius (m R 2 2 2 2 2 1 1 1 1 2
•	Cog prob for each from the and upp from im Element Ag Au	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 10 20 30, 40 10 20 10, 20* 10, 20* 30,40	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to d (extreme grades the listribution). The foll- ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8 0.8 0.8 4000 30000	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50 50 50 50 50 50 50 50 50 50 50	riction Rad riction Rad Fiction Rad 50 50 50 50 50 25 25 50 50 50 50 50 50 50 50 50 5	cantly s, cut nposi lius (m R 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
•	Cu	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 10 20 30, 40 10 20 10, 20* 10, 20* 30,40 10	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to ed (extreme grades the listribution). The foll- ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8 0.8 0.8 4000 30000 10000	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50 50 50 50 50 50 50 50 50 50 50	rade com rade com riction Rad East 50 50 50 50 25 25 50 50 50 50 50	cantly s, cut npositi lius (m R 2 2 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 1 1
•	Cog prob for each from the and upp from im Element Ag Au	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 0 20 30, 40 10 20 10, 20** 30,40 10, 20** 30,40 10 20	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated f ed (extreme grades th listribution). The foll- ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8 0.8 0.8 0.8 0.8 0.000 10000 90000	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50 50 50 50 50 50 50 50 50 50 50	te signific strictions rade com riction Rad East 50 50 50 25 25 25 50 50 50 50 50 50 50 50 50	canth s, cut nposi lius (m 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 1 1
•	Cu	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 10 20 30, 40 10, 20* 10, 20* 10, 20* 30, 40 10 20 30, 40	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to d (extreme grades the distribution). The follo ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8 0.8 0.8 0.8 0.8 0.000 10000 10000	for Cu, Zr nat deviat owing res ktreme gr ktreme gr Cut/Rest North 50 50 50 50 50 50 50 50 50 50 50 50 50	te signific strictions rade com riction Rad East 50 50 50 25 25 25 25 50 50 50 50 50 50 50 50 50 50 50	cantly s, cut nposit lius (m 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1
•	Cu	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 10 20 30, 40 10, 20* 10, 20* 10, 20* 30, 40 10 20 30, 40 10	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to d (extreme grades the listribution). The follo ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 200 70 0.8 0.8 0.8 4000 30000 10000 90000 10000	for Cu, Zr nat deviat owing res ktreme gr Cut/Rest North 50 50 50 50 50 50 50 50 50 50 50 50 50	te signific strictions rade com riction Rad East 50 50 50 50 25 25 50 50 50 50 50 50 50 50 50 50 50 50 50	cantly s, cut: nposit lius (m R 2: 2: 2: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:
•	Cu	Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 2 Domain 0 Domain 10 20 30, 40 10, 20* 10, 20* 10, 20* 30, 40 10 20 30, 40	10: 4 composites 20: 11 composites lots of the 2m co and outlier valued upper log ₁₀ po nolds were appli- on blocks at dista Grade Restriction (ppm)	s >175ppm es >330pp omposite c es identifie opulation c ed to restr ance from t Grade Cut (ppm) 175	a cut to 175ppm m cut to 330ppm lata were generated to d (extreme grades the distribution). The follo ict the influence of ex- their location: High Grade Restriction Threshold (ppm) 70 200 70 0.8 0.8 0.8 0.8 0.8 0.000 10000 10000	for Cu, Zr nat deviat owing res ktreme gr ktreme gr Cut/Rest North 50 50 50 50 50 50 50 50 50 50 50 50 50	te signific strictions rade com riction Rad East 50 50 50 25 25 25 25 50 50 50 50 50 50 50 50 50 50 50	cantly s, cut nposit lius (m 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1

Criteria	Explanation
	• Cu, Zn, Pb, Ag, Au and Fe grades were estimated into a sub-blocked block model utilising the Vulcan ID2 grade interpolator. BM details are as follows:
	Model name : BKZpostest2022 Number of blocks : 32712
	Origin : 0.0 0.0 0.0
	Bearing/Dip/Plunge : 90.0 0.0 0.0
	Variables Default Type Description
	estdom -99 short Estimation domains [5 10 20 23-28 30 40 50]
	cuid2 -99.0 float Cu ppm ID2 estimate
	class -99.0 short Classification 3 inferred 4; expl potential
	dbddoms -99 short domains for assigning DBD [20 23 24]
	dbdregress -99.0 float DBD regression with Fe - by domains
	feid2 -99.0 float Fe% ID2 estimate
	auid2 -99.0 float Au ppm ID2 estimate
	agid2 -99.0 float Ag ppm ID2 estimate
	pbid2 -99.0 float Pb ppm ID2 estimate znid2 -99.0 float Zn ppm ID2 estimate
	Dimension
	Offset minimum : 768800.0 9933350.0 -50.0
	maximum : 769300.0 9933850.0 350.0
	Schema [parent]: 25.0 25.0 10.0 Schema [subblock non-rregular]: minimum : 5.0 5.0 2.0 maximum : 25.0 25.0 10.0
	 Parent blocks discretised at 5mX, 5mY and 2.5mZ directions. Hard boundaries utilised, i.e. only those composites within a domain selected to estimate grades within that domain. A minimum of 8 and maximum of 20 composites allowed. Further composite selection restrictions were applied to the estimation
	of copper in the zinc domains (10 and 20) where for interpolation run- pass1 only samples with copper grades ≥0.4% to be used in estimating blocks.
	 Composite are selected by box searches (to minimise effects caused by wide grid-configuration drillhole spacing) and mimic overall geometries of estimation domains.
	• The composite box-search was typically set at 100mN x 100mE and 1/3 domain thickness for first run-pass with all dimensions doubled for the second
	interpolation run (where required to populate all blocks within domains). Grad
	variability is preserved in the RL direction (across strike) by utilising the
	restricted search radii and in the plane of mineralisation by the octant search
	criteria and composite numbers limitations listed below.
	• Octant sample selection criterion applied to the interpolation run-pass1 for the
	estimation of copper in the zinc domains (10 and 20):
	 Copper grades >0.4%.
	 Maximum of 8 samples per octant.
	 Octant rotated to match search box orientations.
	 Minimum of 4 octants to be informed before a block is estimated

Criteria	Explanation
	(minimum of 1 composite per octant).
Moisture	 Composite weights in grade interpolation were applied on an inverse distance squared basis. All elements for all blocks have been estimated. The model was validated visually, statistically and by 50m spaced easting, northing and RL swath plots. The resource estimate tonnage factors are based on dry bulk density measurements. All assays were undertaken on oven dried sample pulps (105° for minimum of 24hrs). The resource is estimated on a dry basis.
Cut-off parameters	 The copper cut-off/reporting grade of 0.5% for the LCZ and zinc cut-off/reporting grade of 4% for the UPZ high-grade mineralisation represents 94% and 97% of the Inferred Resources (respectively) within these domain volumes. Reporting the copper mineralisation at 0.6% and the zinc mineralisation at 5% has negligible impact (reducing the LCZ RE by 80kT and the UPZ by 50kT with no material impact on grade). The zinc estimate in the UPZ and copper estimate in the LCZ depict robust high grade mineralisation in these domains. This coupled with their shallow depths, their attitudes and proximity to each other plus their location with respect to the BMK deposit 800m to the south satisfy the requirement that there are reasonable prospects for eventual economic extraction of these bodies as defined by the reporting cuts. The zinc cut-off/reporting grade of 1% for the UPZ low-grade mineralisation represents 82% of the material within that domain. A high level economic evaluation of the resources in the UPZ low-grade domain was undertaken to establish a likely lower cut that satisfies the reasonable prospects for eventual economic extraction of the UPZ low-grade and proximal location of the UPZ low-grade mineralisation is such that a significant volume of this material would be mined to access the higher grade zinc and copper mineralisation. Therefor as this material must be mined, the mining costs can be discounted from the economic equation and with this done, the UPZ low-grade mineralisation at a 1% Zn reporting cut has a reasonable prospect of being economically extracted as the value of this material is indicated to be at or greater than the likely combined processing, refining and general/admin costs (per tonne of mineralisation basis).
Mining factors or assumptions	 The following mining parameters were used in assessing the likelihood of the UPZ low-grade zinc for having reasonable prospects for eventual economic extraction [NB. Any reference to mining, waste, ore and other modifying factors is for transparency regarding the activities and unit costs presented. There are no Ore Reserves at BKZ.]: Mining loss 10% Mining dilution 10% Waste to mineralisation ratio 4.8:1 Mining cost US\$2.86/t = US\$16.59/t mineralisation however assumed to be zero as the UPZ low-grade mineralisation will be mined to access the UPZ high-grade and LCZ mineralisation. These parameters and assumptions are the based on those utilised for the reporting of the BKZ 2018 Resource Estimate. Costs have been inflated by 10% (utilising the Bank Indonesia reported monthly inflation figures May2018 to May2022).

Criteria	Explanation
Metallurgical	• The following metallurgical parameters were used in assessing the likelihood of the UPZ
factors or assumptions	low-grade zinc for having reasonable prospects for eventual economic extraction, assuming a 1000tpd floatation circuit:
ussumptions	 Metal recoveries:
	■ Zn 85%
	 Pb 90%
	 Ag 60%
	 Au 55%
	 Concentrate Grades:
	 Zn 55%, Ag 170g/t, Au 1.6g/t in zinc concentrate
	 Pb 65%, Ag 680g/t, Au 6.3g/t in lead concentrate
	 9% moisture content
	 Processing cost (from Mining Cost Service, Mine & Mill Equipment Estimator's Cuido (2017) – power and Jahour costs adjusted for BKZ) for 1000tro throughout
	Guide (2017) – power and labour costs adjusted for BKZ) for 1000tpa throughput US\$31.56
	These parameters and assumptions are based on those utilised for the reporting of the
	BKZ 2018 Resource Estimate. Costs have been inflated by 10% (utilising the Bank
	Indonesia reported monthly inflation figures May2018 to May2022).
Smelting and	• The following smelting and refining parameters were used in assessing the likelihood of
refining	the UPZ low-grade zinc for having reasonable prospects for eventual economic
factors or	extraction:
assumptions	• Transport:
	 Road and barge freight to Port US\$110.00/wmt Assay and part charges US\$22.00/wmt
	 Assay and port charges US\$22.00/wmt Sea freight US\$62.00/wmt
	 Payable metal in concentrate:
	 In a solution in contentinate. Zn 85%
	■ Pb 95%
	 Ag 33%
	 Au 60%
	 Smelter charges:
	 Zn US\$165.00/dmt
	 Pb US\$165.00/dmt
	 No price participation adjustment
	 Assumed no penalties
	• Refining charges:
	 Ag US\$1.65/oz Au US\$11.00/oz
	These parameters and assumptions are based on those utilised for the reporting of the
	BKZ 2018 Resource Estimate. Costs have been inflated by 10% (utilising the Bank
	Indonesia reported monthly inflation figures May2018 to May2022).
Economic	 The following economic parameters were used in assessing the likelihood of the UPZ
factors or	low-grade zinc for having reasonable prospects for eventual economic extraction:
assumptions	 General and Admin US\$11.00/t ore (assumes no cost sharing with neighbouring
	BKM operation).

Criteria	Explanation
	• Metal prices (KSK provided long term projected metal prices, April 2022):
	 Zn US\$1.15/lb
	 Pb US\$0.95/lb
	 Ag US\$21.00/oz
	 Au US\$1,650.00/oz
	• Royalties:
	 Zn 3%
	 Pb 3%
	 Ag 3.25%
	• Au 3.75%
	These parameters and assumptions are based on those utilised for the reporting of the
	BKZ 2018 Resource Estimate. Costs have been inflated by 10% (utilising the Bank Indonesia reported monthly inflation figures May2018 to May2022).
	• Utilising the inputs stated above and a simple cash flow model the net smelter return for
	the UPZ low-grade mineralisation at a 1% Zn cut off is -US\$9.10/t mineralisation (1000tpd operation and no G&A sharing with the BKM operations). A 50% sharing of G&A reduces costs by US\$5.50/t and a 10% increase in the predicted long term
	commodity prices increases revenue by US\$5.00.
	• The cash flow model is crude and indicative only. Higher commodity prices were utilised
	in 2018 and costs lower (minus 10% inflation). In 2018 the operating margin was
	marginally positive and it was assumed that the UPZ low-grade mineralisation reported
	at >1% Zn satisfied the requirement that there is reasonable prospects for eventual
	economic extraction of this mineralisation. Reporting of the 2022 UPZ low-grade
	mineralisation at 1% Zn is still considered to satisfy the reasonable prospects for
	eventual economic extraction as shown by the cash flow model's sensitivity to
	commodity prices (BKZ is a multi-commodity occurrence) and the fact that the cash flow
	model does not account for any cost benefits a BKZ project will gain from being located
	800m from the BKM occurrence.

Criteria	Explanation
Environmental factors or assumptions	• There has been no environmental investigation at this early stage of work on the BKZ project.
Tonnage Factors/Dry Bulk Density	 Tonnage factors ("TF") were applied to the BM by the following regression formula: dbddoms = 20 [estdom 10 20 30 40]: TF = 0.033 * (Cu% + Fe% + Zn% + Pb%) + 2.50 and the adjustment of: If {TF < 2.60} then TF = 2.60 The following figure shows the relationship between DBD and metal grade for dbddoms = 20.
	The regression equation is derived from dry bulk density measurements ("DBD") taken from 1396 assayed intervals of the UPZ and LCZ domains (an additional 214 measurements over the 2018 dataset) and utilised in preference to an interpolated tonnage factor to mitigate any local impact of DBD sample selection bias and to maximise coverage of the BKZ mineralised domains. The 2018 BKZ resource estimate regressed TF was checked by an interpolated ID2 TF and the comparison is tabulated below (check not repeated for the 2022 RE):
	Domain% Volume MineralisationRegressedID2 Check ID2 CheckRelative Diff ID2 vs RegressedUPZ-Low_Grade52% of UPZ2.812.820.2%UPZ-High_Grade48% of UPZ3.183.190.4%LCZ-Silica_Bx93% of LCZ3.003.072.5%LCZ-Mass_Sulphide7% of LCZ3.223.8118.3%Outside_DomainsN/A2.712.803.3%
	The check ID2 TF values show good correlation with the Regressed TF values for the UPZ, reasonable correlation for the LCZ-Silica_Breccia domain and either DBD sample selection bias or poor fitting of the regression for the LCZ-Massive_Sulphide domain. As

Criteria	Explanation
	the LCZ-Massive_Sulphide domain is a low contributor to the LCZ Mineral Resource the impact of any error in TF on the BKZ Inferred Mineral Resource Estimate for this mineralisation is minimal and in agreement with the risk associated with Inferred Resources (JORC 2012).
Classification	 The 2022 Mineral Resource at the BKZ Project is classified as Inferred in accordance with the guidelines defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). Risks associated with the Mineral Resource are stated in the "Discussion of relative accuracy/ confidence" criteria section below.
Audits or reviews.	• There have been no external reviews or audits to the 2022 BKZ Resource Estimate.
Discussion of relative accuracy/ confidence	 Risks to the BKZ Resource Estimate to be addressed in preparation for upgrading of the confidence and JORC (2012) classification are as follows: Core Loss: Moderate risk can be attributed to the unknown effect that the significant core loss has on to the current resource estimate. Suggested work programme: Establish if bias is introduced into the assay dataset from selective drilling recovery/loss. Studies can be undertaken on existing core to investigate the effect of selective recovery/loss prior to undertaking any more drilling at BKZ. The outcomes of these studies will provide valuable input into future drilling programmes on what to monitor regarding recovery/loss and on how to maximise recovery and/or minimise the selective recovery of material. Assay Reliability: Low risk to the BKZ Resource Estimate can be attributed to the unknown reliability of the Zn, Pb, Ag and Au assays for the samples submitted without suitable certified reference material standards. Suggested work programme: A programme of umpire laboratory testwork is required to establish the reliability of these samples from the UPZ mineralisation. Drill spacing: Low to moderate risk to the BKZ Resource Estimate can be attributed to the assumed geological/mineralisation and grade continuity garnered from the current nominal 50mX50m grid drill pattern. Suggested work programme: A study to establish the optimum drill spacing for considering the BKZ mineralisation for higher resource classifications can be undertaken utilising the current assay dataset which will provide valuable information on the likely internal variability of the mineralisation and assist greatly in establishing the optimum drill spacing for design of future drilling programme will also include twin and cross holes for increasing understanding of grade variability. Internal Controls on mineralisation: Low to mod
	 DBD/Tonnage Factors: Low risk to the BKZ Resource Estimate can be attributed to the reliability and assignment of tonnage factors to the resource model.

Criteria	Explanation
	 Suggested work programme: Design and implement an ongoing QA/QC programme to monitor and improve practices to guard against DBD bias caused by selective sampling of intervals for DBD measurements. Competent Person Site Report: Low risk to the BKZ Resource Estimate can be attributed to absence of a site visit and report on the work undertaken and the mineralisation encountered at BKZ. Suggested work programme: Competent person to undertake a site visit at the beginning of the next drilling programme at BKZ. Estimation Process: Low to moderate risk to the BKZ Resource Estimate can be attributed to the grade interpolation methodology. Suggested work programme: Ensure that future drilling programmes improve the data density and spatial distribution to a status where the robustness of resource estimates underpinned by this data will benefit from being produced by more robust methodologies (such as Ordinary Kriging).

Abbreviation	Explanation
ARS	Asiamet Resources Limited
ВКМ	Beruang Kanan Main
BKS	Beruang Kanan South
BKW	Beruang Kanan West
BKZ	Beruang Kanan Zinc
BM	Block Model
CRM	Certified Reference Material
DBD	Dry Bulk Density
H&A	Hackman and Associates
ID2	Inverse Distance Squared
ITS	PT Intertek Utama Services
JORC	Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition)
КЅК	PT Kalimantan Surya Kencana
LCZ	Lower Copper Zone
LIDAR	Light Detection And Ranging
QA/QC	Quality Assurance / Quality Control
QC	Quality Control
RQD	Rock Quality Descriptor
SCC	Sericite-Chlorite-Clay Alteration
SIF	Standard Industry Format
SQL	Structured Query Language
TF	Tonnage Factor
TIN	Triangulated Irregular Network
UPZ	Upper Polymetallic Zone
UTM	Universal Transverse Mercator
VBA	Visual Basic for Applications

List of Abbreviations specific to BKZ Project Resource Estimate Explanatory Notes