Explanatory Notes: BKZ 2022 Base Metal and Gold-Silver Exploration Targets, procedures, observations and outcomes; presented according to the JORC TABLE 1 checklist of the JORC Code (2012).

Prepared for: Asiamet Resources Limited By: Hackman & Associates Pty Ltd Date: May 2022

Summary:

This technical explanation of the BKZ 2022 Base and Precious Metals ("Polymetallic") Exploration Target assessment adheres to the JORC Code (2012), and specifically Clause 17, and follows the format of the relevant Sections of Table 1 in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). An Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade (or quality), relates to mineralisation for which there has been insufficient exploration to estimate a Mineral Resource.

The Exploration Target at BKZ refers to the area outside of the BKZ Mineral Resources and the reported potential quantity and grade of the targets are conceptual in nature. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and it is uncertain if further evaluation will result in the estimation of a Mineral Resource in the target areas. Given the level of uncertainty surrounding the supporting data, the Exploration Targets' tonnage or grade must not be reported as a 'headline statement' in any Public Report.

This technical explanation outlines activities undertaken by Kalimantan Surya Kencana ("KSK") and their associates and Hackman & Associates Pty Ltd ("H&A") in evaluating the Exploration Targets at BKZ and presents outcomes and observations material to the understanding of the exploration potential and risks associated with the Exploration Targets. The BKZ Polymetallic Project hosts a base and precious metals Mineral Resource and is 800m north of the BKM Copper Mineral Resource. BKZ is located 180 kilometres north of Palangkaraya, the capital city of Central Kalimantan. The BKZ Polymetallic mineralisation ("BKZ") is located within a 6th generation Contract of Work ("KSK CoW") held by PT Kalimantan Surya Kencana ("KSK"). KSK, through intermediary companies, is eventually 100% owned by Asiamet Resources Limited ("ARS"). H&A has undertaken the BKZ Polymetallic 2022 Resource Estimate for, and at the request of Asiamet Resources Limited.

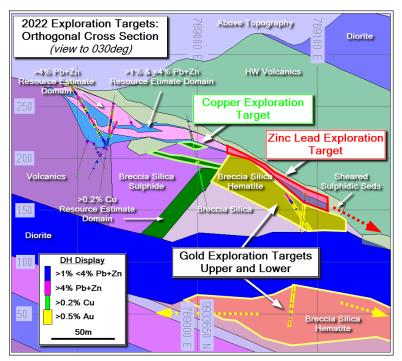


Figure 1: Location map – KSK Contract of Work containing the BKZ Polymetallic Mineralisation.

The 2022 Exploration Target identification at the BKZ Polymetallic project is based on the KSK geological and analytical database as at 12 April 2022 and the 2022 geological, structural and mineralisation interpretations undertaken by Patrick Creenaune, consultant Geologist to KSK. Assay data QC was managed by KSK and their interim report dated Nov 2021 and QC assay data analysis (May 2022) were reviewed by H&A. The data analyses and Exploration Target assessment (size and grade tenor) were undertaken by Patrick Creenaune and Duncan Hackman of H&A.

The BKZ project hosts two well-developed mineralised bodies that are assigned an Inferred Resource Estimate Classification (JORC, 2012), the out cropping Upper Polymetallic Zone ("UPZ") and the underlying Lower Copper Zone ("LCZ"). This mineralisation is reported exclusively in explanatory notes titled "Explanatory Notes: BKZ Polymetallic 2022 Resource Estimate procedures, observations and outcomes; presented according to the JORC TABLE 1 checklist of the JORC Code (2012)" (available on ARS website, www.asiametresources.com). The Exploration Target potential presented in this report is exclusive of the Mineral Resources reported in the BKZ 2022 Mineral Resource Estimate Explanatory Notes.

The Base Metal Exploration Targets at BKZ are based on 15 drill intercepts at >50m spacing and located peripheral to the UPZ and LCZ Mineral Resources. The Gold-Silver Exploration Targets at BKZ ("Precious Metal" mineralisation), is based on 16 drill intercepts, mostly at >50m spacing, and in two volumes, one located peripheral and to the east of the LCZ and the second located below a footwall diorite sill to the LCZ. An orthogonal cross section showing the relative locations of the BKZ Exploration Targets is presented at Figure 2.

Figure 2: Orthogonal Cross Section showing relative position of Exploration Targets at BKZ. [Exploration Targets are not Mineral Resources. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and that it is uncertain if further evaluation will result in the estimation of a Mineral Resource.]

Details regarding the data underpinning and evaluation of the Exploration Targets at BKZ are included in the attached JORC Table 1 Explanatory Notes. A summary of processes and findings follow:

Zinc-Lead Exploration Target

The volcanogenic hosted massive sulphide Zinc-Lead mineralisation at BKZ is hosted in a north striking, 25^o easterly dipping sheared sulphidic sediment that defines the contact between the thick hangingwall volcanic sequence (consisting of predominantly crystal lithic tuffs) and a sequence of variably brecciated, silicified and FeOx altered andesitic volcanics. The sheared sediment contact has been predictably intersected by holes drilled to date and has proven to be a reliable unit from which to define drill targets and to interpret and model both shear constrained and adjoining mineralisation. The Zinc-Lead Exploration Target at BKZ is identified by the known and projected position of the sheared sediment to the east and down-dip of the UPZ 2022 Mineral Resource.

The known Zinc-Lead rich intercepts defining a >50m drill-spaced volume of the Exploration Target at BKZ (Figure 3) show:

- This spacing is too broad to instil confidence in both grade and thickness continuity, as depicted by the drill intercepts detailed at Table 1 and spatial presentation at Figure 3.
- The mineralisation is similar to that of the sheared sulphidic sediments hosting the UPZ mineralisation.
- Intercepts are located where predicted by planar extrapolation of the UPZ mineralisation down dip to the east, which is a good indication that they represent the continuation of mineralisation defined as the UPZ Mineral Resource Domain.

- That the target appears continuous (at this drill spacing) and is mostly of thin but variable thickness for at least up to 100m from the UPZ Resource (Figure 3).
- The Exploration Target area identified in Figure 3 (orange polygon) is significantly thinner than the contiguous UPZ Mineral Resource area (blue polygon). A rudimentary estimate of the Exploration Target area shows that it hosts, at a 4% Zn lower cut, between approximately 200KT and 250KT of semi-massive to massive sulphide mineralisation with approximate grades ranging between 6% and 9% Zn, and 3% and 5% Pb (similar grade tenor to those estimated in the Mineral Resource).
- The peripheral and most eastern holes, although variably mineralised, have all intersected the host sulphidic sediment, adding confidence in extending the Exploration Target area beyond the current drilling (in directions indicated by the orange arrows in Figure 3).

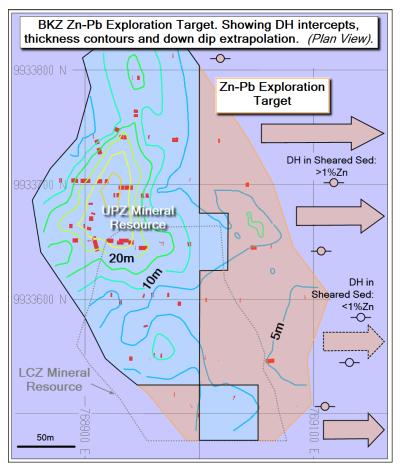
In addition to the observations from the drilling, the geological setting for the mineralisation supports the interpretation that the Zinc-Lead mineralisation has a high probability of extending well beyond the drilled area in the down-dip direction.

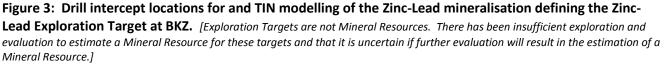
The Exploration Targets for expanding the Zinc-Lead mineralisation at BKZ include:

- 1. The current broad spaced drilled area immediately east of the current UPZ Mineral Resource which is estimated to host between approximately 200KT and 250KT of semi-massive to massive sulphide mineralisation with approximate grades ranging between 6% and 9% Zn and 3% and 5% Pb. [*This approximation is based on triangulated irregular network (TIN) modelling of the intercepts, ID*² grade interpolation and tonnage factors generated by a dry-bulk-density vs sulphide-mineral-content regression formula utilised for the adjoining UPZ 2022 Resource Estimate.]
- 2. Identifying additional mineralisation by expansion of and delineating of thicker zones within the current broad-spaced drilling in the 100m immediate east of the current UPZ Mineral Resource. This will require KSK to undertake infill drilling to achieve at least 25m by 50m grid spacing and may increase the resources in this area by a factor of 50% (similar to the increased experienced through infill drilling of the UPZ mineralisation). An additional approximate 100KT to 150KT of semi-massive to massive sulphide mineralisation with approximate grades ranging between 6% and 9% Zn and 3% and 5% Pb may be identified by this drilling.
- 3. Step-out drilling down-dip to the east of the current drill area at BKZ. As a minimum, the assessment of the current drilled area suggests an Exploration Target of approximately 200KT to 400KT of semi-massive to massive sulphide mineralisation with approximate grades ranging between 6% and 9% Zn and 3% and 5% Pb may be identified for every additional 100m eastern expansion along the entire 350m strike length of the BKZ mineralised system. This mineralisation will be at increasing depth with increasing eastings (wrt the surface topography). KSK will need to consider the "reasonable prospects of eventual economic extraction" (JORC Code Clause 20) when evaluating the extent of plausible down-dip expansion drilling.
- 4. The geological events that resulted in the thick Zinc-Lead mineralisation of the UPZ 2022 Mineral Resource are not clearly understood, but are most likely a combination of both primary emplacement and later (shear related) remobilisation. There is no reason to question if the thickening of the sulphidic sheared sediments and associated Zinc-Lead mineralisation will not occur in replica environments along the favourable contact horizon and that this represents an Exploration Target of approximately 1MT of semi-massive to massive sulphide mineralisation with approximate grades ranging between 6% and 9% Zn and 3% and 5% Pb.

Even though there is high probability that the sheared sulphidic sediments continue to the east for at least 200m beyond the UPZ 2022 Mineral Resource, the expressed range of approximated size and grade tenor of the four Exploration Targets (above) depicts the uncertainty regarding the mineralisation potential of the sheared sediments. Beyond 200m easterly extension, the sulphidic shear zone will be at depths greater than 250m, at which point it is considered that high metal accumulation will be required for satisfying the "reasonable prospects of eventual economic extraction" JORC requirement (2012, Clause 20). Areas favourable for hosting high grades and/or thick zones of mineralisation will be a major component for identifying Exploration Target areas at these depths.

The Exploration Target for Zinc-Lead mineralisation in the area defined by the entire 350m strike length of the UPZ and a 200m down dip eastern extension of the UPZ can be expressed as a range, which is:


Between approximately 250KT and 1500KT of semi-massive to massive sulphide mineralisation with approximate grades ranging between 6% and 9% Zn and 3% and 5% Pb.


Planar sulphidic sheared sediments intersected within the hangingwall volcanics and below the footwall diorite indicate that replica favourable Zinc-Lead host horizons may exist at BKZ. Those intercepted to date are lacking any indication of being proximal to mineralisation.

PbZn EP zone	Section	Hole	From	To	Interval	Exploration Potential Grade Intercept	РЬ (%)	Zn (%)	Au (ppm)	Ag (ppm)	Cu (%)	Fe (%)				
			58.5	59.5	1.0	Low Grade PbZn	0.32	2.08	0.11	5.1	0.03	10.0				
		BKZ33500-03	59.5	60.5	1.0	High Grade PbZn	2.05	6.57	0.11	21.6	0.05	9.7				
			60.5	61.5	1.0	Low Grade PbZn	0.18	1.09	0.12	4.9	0.03	12.1				
	33500	BKZ33500-04	50.6	52.0	1.4	Low Grade PbZn	0.61	1.23	0.02	9.1	0.02	6.0				
		DK2000004	52.0	53.0	1.0	High Grade PbZn	1.59	2.87	0.07	46.0	0.06	5.2				
		BKZ33500-06	117.0	119.0	2.0	High Grade PbZn	4.67	10.34	0.38	177.0	0.19	7.5				
		DK233500-06	119.0	124.0	5.0	Low Grade PbZn	0.34	1.14	0.06	12.0	0.01	9.2				
		BKZ33550-03	47.0	49.0	2.0	Low Grade PbZn	0.29	2.10	0.11	71.2	0.12	8.4				
	33550		49.0	50.0	1.0	High Grade PbZn	0.67	5.44	0.06	267.0	0.14	5.1				
	33550	BKZ33550-05	100.5	114.0	13.5	High Grade PbZn	8.36	15.05	0.36	167.0	0.48	17.8				
E			114.0	117.0	3.0	Low Grade PbZn	2.09	0.41	2.42	1374.7	0.37	39.0				
Eastern Extension		BKZ33600-07	50.0	53.0	3.0	Low Grade PbZn	1.10	2.43	0.06	78.3	0.11	8.1				
to UPZ			53.0	56.0	3.0	High Grade PbZn	7.42	23.07	0.26	246.0	0.98	14.1				
10 UP2	33600	BKZ33600-10	82.5	83.5	1.0	High Grade PbZn	12.63	0.71	0.33	137.0	0.17	5.2				
		BKZ33600-12	173.0	176.5	3.5	High Grade PbZn	4.31	8.94	0.43	146.1	1.19	7.9				
		DK233000-12	176.5	184.7	8.2	Low Grade PbZn	0.93	0.05	2.23	113.3	0.05	5.6				
	33650					BKZ33650-09	110.0	119.0	9.0	High Grade PbZn	1.98	2.86	0.25	61.7	0.09	7.2
		BKZ33650-12	155.0	160.0	5.0	Low Grade PbZn	1.06	0.58	0.34	96.0	0.04	7.3				
		DK20000-12	160.0	163.0	3.0	High Grade PbZn	6.91	0.06	0.28	258.7	0.44	9.0				
	33700	DV700700.00	117.5	120.5	3.0	Low Grade PbZn	0.70	1.86	0.06	33.3	0.09	8.3				
		BKZ33700-08	120.5	126.5	6.0	High Grade PbZn	3.82	4.58	0.20	87.2	1.08	24.1				
			95.0	100.0	5.0	Low Grade PbZn	0.25	0.56	0.02	31.5	0.06	7.0				
	33750	BKZ33750-08	100.0	103.0	3.0	High Grade PbZn	1.93	6.96	0.08	70.4	0.16	6.8				
			103.0	109.0	6.0	Low Grade PbZn	0.56	0.95	0.07	30.5	0.06	6.4				

Table 1: Drillhole intercepts within the Zinc-Lead Exploration Target area at BKZ.

[Exploration Targets are not Mineral Resources. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and that it is uncertain if further evaluation will result in the estimation of a Mineral Resource.]

Copper Exploration Target

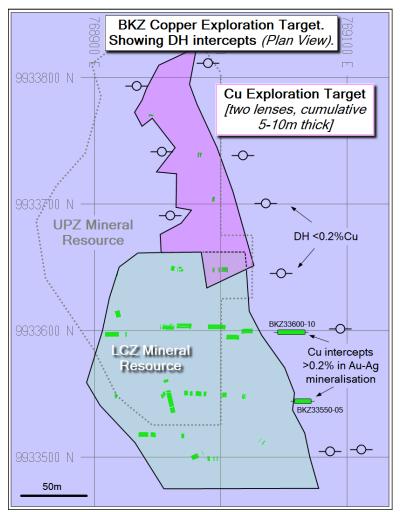
The copper rich intercepts outlining the Exploration Target at BKZ show mineralisation styles similar to the brecciated silica sulphide volcanics hosting the LCZ mineralisation. These intercepts are located to the north of the LCZ mineralisation and interpreted as sub-horizontal bodies paralleling the attitude of the overlying UPZ Zinc-Lead mineralisation. This interpretation is highly conceptual and it is equally probable that the 50m spaced drill intercepts have intersected en echelon steeply north dipping mineralisation reflected by the north plunging attitude of the LCZ observed between 9933600N and 9933700N.

The broad spaced drilling (Figure 4) and predominantly thin intercepts (Table 2) limits this mineralisation from being reported as Resources until such time that confidence in the geological, grade and tonnage continuity and the criterion of "reasonable prospects of eventual economic extraction" is proven to levels that satisfy the guidelines set out in the JORC Code (2012 Edition). This will require KSK to undertake infill drilling to achieve at least 25m by 50m grid spacing, which, due to the Exploration Target's proximity to the UPZ, can be achieved by extending infill holes targeting the UPZ mineralisation (when undertaken to elevate confidence in the UPZ Resource).

Current drilling has defined the lateral extent of the Copper Exploration Target, which is approximated as:

Between approximately 100KT and 150KT of stringer to semi-massive mineralisation with approximate grades ranging between 1.0% and 1.5% Cu and 20ppm and 50ppm Ag.

[This approximation is based on TIN modelling of the intercepts, ID² grade interpolation and tonnage factors generated by a dry-bulk-density vs sulphide-mineral-content regression formula utilised for the adjoining LCZ 2022 Resource Estimate.]


There is no indication of repeat LCZ mineralisation within the drilled volume at BKZ. The form of the LCZ Resource Mineralisation is interpreted to plunge steeply to the north between section lines 9933650N and 9933700N where it is then truncated by a laterally extensive diorite sill. There is potential that the mineralisation continues below the diorite (an untested target), however an extensive shear zone exploits the basal contact of the diorite and movement along this shear may have offset the depth continuation of the LCZ.

Two significant copper intercepts (holes BKZ33550-05 and BKZ33600-10) are located immediately east of the LCZ Mineral Resource (Figure 4) within silica hematite replacement style mineralisation hosting the Gold-Silver Exploration Targets. The remaining holes within the Gold-Silver Exploration Target areas show very low copper grades (Table 3) and it is most likely that the copper intercepts in holes BKZ33550-05 and BKZ33600-10 reflect overprinting of original LCZ sulphidic stringer copper mineralisation by silica hematite Gold-Silver mineralisation. The Gold-Silver Exploration Targets are unlikely to host any significant copper mineralisation.

Cu EP zone	Section	Hole	From	To	Interval	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
	33650	BKZ33650-08	73.5	79.5	6	0.69	0.09	0.09	0.06	7.50	12.4
	33700	BKZ33700-07	84.8	98	13.2	1.09	2.36	3.14	0.40	47.64	12.5
Nth Extension LCZ		BKZ33750-05	51	53.5	2.5	1.37	0.10	0.13	0.07	17.90	8.2
	33750	BKZ33750-07	84	91.3	7.3	1.91	1.32	1.17	0.40	45.26	14.6
		BKZ33750-07	95.75	102	6.25	2.86	0.74	0.86	0.27	101.08	13.1

Table 2: Drillhole intercepts defining the Copper Exploration Target at BKZ.

[Exploration Targets are not Mineral Resources. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and that it is uncertain if further evaluation will result in the estimation of a Mineral Resource.]

Figure 4: Drill intercept locations for, and TIN modelling of the Copper mineralisation defining the Copper Exploration Target at BKZ. [Exploration Targets are not Mineral Resources. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and that it is uncertain if further evaluation will result in the estimation of a Mineral Resource.]

Gold-Silver Exploration Target potential

The Gold-Silver rich intercepts in both the Upper and Lower Gold zones that outline the Exploration Target potential at BKZ show that this mineralisation is hosted by intense and pervasive silica hematite replacement style altered volcanics (and/or sediments). Two separate zones are identified from the drilling:

• The Upper Gold-Silver Exploration Target is located immediately east of the LCZ mineralisation and is interpreted with an easterly dip, parallel to the attitude of the overlaying UPZ mineralisation. Most intercepts show that both gold and silver mineralisation tenor is highest in the upper reaches of the altered zone where it is contact with the UPZ and sheared sulphidic sediments. Grades are also highest and the zone thinnest in the volume where the footwall diorite sill geometry flexes or ramps from being in contact with the overlaying sheared sulphidic sediments (in the east) to a position along the footwall of the LCZ and volcanics in the central/western portion of BKZ (south of 9933600N, Figure 2, Figure 5 and Table 3).

The potential mineralisation within the Upper Gold-Silver Exploration Target to the south of 9933600N (highest grades and adjacent to the LCZ) is:

Between approximately 500KT and 600KT of silica-hematite mineralisation with approximate grades ranging between 2.0ppm and 3.0ppm Au and 300ppm and 400ppm Ag.

The potential mineralisation within the Upper Gold-Silver Exploration Target to the north of 9933600N is:

Between approximately 1500KT and 2000KT of silica-hematite mineralisation with approximate grades ranging between 1.0ppm and 2.0ppm Au and 100ppm and 200ppm Ag.

[These approximations are based on TIN modelling of the intercepts, ID² grade interpolation and tonnage factors generated by a dry-bulk-density vs Fe grade regression formula.]

The Upper Gold-Silver Exploration Target has limited potential to expand directly north of where drilled and modelled (as indicated by a hole BKZ33800-05, traversing non-mineralised andesitic volcanics along 9933800N). The domain is open, but thins to less than 5m to the south (along 9933500N) and appears to be closed off to the south-east by holes drilled on sections 9933550N to 9933650N. Long drill hole intercepts on sections 9933700N and 9933750N show that the Upper Gold-Silver continues as an Exploration Target to the north-east of the drilled area at BKZ.

If mineralisation persists to the north and north-east (to 99337750N and 769150E, dashed area on Figure 5) this addition to the Exploration Target is:

Between approximately 1000KT and 1200KT of silica-hematite mineralisation with approximate grades ranging between 0.5ppm and 1.0ppm Au and 30ppm and 60ppm Ag.

[This approximation is based on TIN modelling of the intercepts, ID² grade interpolation and tonnage factors generated by a dry-bulk-density vs Fe grade regression formula.]

Globally the Upper Gold-Silver Exploration Target within the drilled and extended area is:

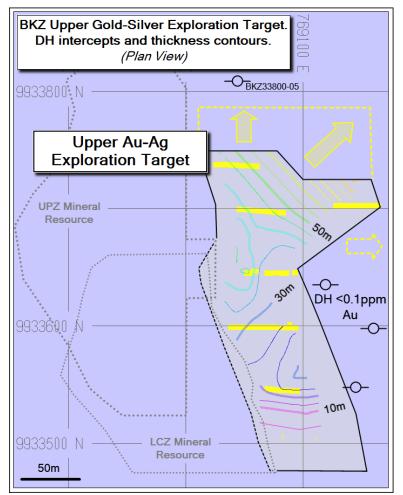
Between approximately 3000KT and 3800KT of silica-hematite mineralisation with approximate grades ranging between 1.0ppm and 1.5ppm Au and 100ppm and 150ppm Ag.

The Lower Gold-Silver Exploration Target is located immediately below the footwall diorite (to the LCZ) within and to the east of the flexure zone described as being spatially associated with high grade volumes of the Upper Gold-Silver Exploration Target (see above). Drilling to date shows the Lower Gold-Silver Exploration Target mineralisation to be thickest in the central area of the flexure (Figure 6). Both gold and silver grades are typically less than half the grades encountered in the Upper Gold-Silver Exploration Target (Table 3).

It is approximated that the Lower Exploration Target is:

Between approximately 1000KT and 1500KT of silica-hematite mineralisation with approximate grades ranging between 0.4ppm and 0.7ppm Au and 20ppm and 40ppm Ag.

[This approximation is based on TIN modelling of the intercepts, ID² grade interpolation and tonnage factors generated by a dry-bulk-density vs Fe grade regression formula.]


The Lower Gold-Silver Exploration Target is open in all directions, although the interpreted overlying diorite sill is anticipated to restrict the extrapolation of this mineralisation in the north, west and south directions. An underlying shear zone is also anticipated to truncate this mineralisation to the west. The mineralisation is open to the east.

The broad spaced drilling (Figure 5 and Figure 6) limits both the Upper and Lower Gold-Silver Exploration Targets from being reported as Resources until such time that confidence in the geological, grade and tonnage continuity and the criterion "reasonable prospects of eventual economic extraction" is proven to levels that satisfy the guidelines set out in the JORC Code (2012 Edition). Both infill drilling (to within <30m grid spacing) and metallurgical studies are key components of any further evaluation of this mineralisation.

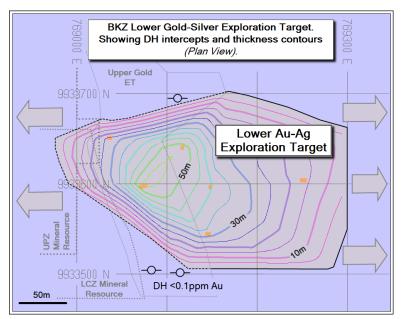

Au-Ag EP zone	Section	Hole	From	To	Interval	Au (ppm)	Ag (ppm)	Cu (%)	РЬ (%)	Zn (%)	Fe (%)
	33500	BKZ33500-05	162.5	168.5	6.0	0.70	47.6	0.02	0.98	0.01	6.8
	33300	BKZ33500-06	138	143	5.0	0.33	106.2	0.01	0.64	0.01	4.9
	33550	BKZ33550-05	117	172	55.0	4.12	407.8	0.13	0.95	0.03	23.6
	33600	BKZ33600-10	83.5	181.9	98.4	2.45	546.6	0.24	4.95	0.01	9.0
	33000	BKZ33600-12	185.8	207	21.2	1.05	82.7	0.02	0.18	0.01	5.4
Upper Gold (Au1)		BKZ33650-09	119	131.5	12.5	0.57	117.8	0.04	1.77	0.03	7.6
	33650	DK20000-00	149.5	199.6	50.1	3.09	108.4	0.06	0.74	0.03	7.3
		BKZ33650-12	165.6	197	31.4	2.53	252.5	0.04	1.44	0.03	11.7
	33700	BKZ33700-08	126.5	214	87.5	1.69	95.8	0.04	0.64	0.02	14.3
		BKZ33700-09	220.5	285.75	65.3	0.70	56.4	0.03	0.25	0.02	8.8
	33750	BKZ33750-08	115	200.4	85.4	0.57	57.7	0.02	0.60	0.01	4.1
	33550	BKZ33550-07	259	294.5	35.5	0.31	80.2	0.04	0.51	0.08	8.2
Lower Gold (Au2)		BKZ33600-11	278.4	320.5	42.1	0.56	60.9	0.01	0.16	0.00	4.4
	33600	BKZ33600-12	262.15	319.75	57.6	0.47	16.1	0.02	0.08	0.00	6.8
		BKZ33600-13	357.6	378.5	20.9	0.29	4.8	0.01	0.07	0.04	9.2
	33650	BKZ33650-11	269	324.5	55.5	0.79	26.7	0.01	0.13	0.01	9.2
	33630	BKZ33650-12	281.65	307.1	25.5	0.31	6.6	0.01	0.12	0.00	3.1

 Table 3: Drillhole intercepts defining the Gold-Silver Exploration Target at BKZ.

[Exploration Targets are not Mineral Resources. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and that it is uncertain if further evaluation will result in the estimation of a Mineral Resource.]

Figure 5: Drill intercept locations for, and TIN modelling of Gold-Silver mineralisation defining the Upper Gold-Silver Exploration Target at BKZ. *[Exploration Targets are not Mineral Resources. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and that it is uncertain if further evaluation will result in the estimation of a Mineral Resource.]*

Figure 6: Drill intercept locations for, and TIN modelling of Gold-Silver mineralisation defining the Lower Gold-Silver Exploration Target at BKZ. [Exploration Targets are not Mineral Resources. There has been insufficient exploration and evaluation to estimate a Mineral Resource for these targets and that it is uncertain if further evaluation will result in the estimation of a Mineral Resource.]

The Exploration Targets described under the Zinc-Lead, Copper and Gold-Silver sub-headings (above) do not include the potential outside of the drilled volume at BKZ and immediate surrounds. The depth extension or repetition of mineralisation away from the immediate BKZ area has not been tested. The untested area between BKZ and BMK is considered particularly prospective for hosting both BKM and BKZ styles of mineralisation.

Forward Programmes

KSK had informed H&A that:

The key objectives at BKZ and surrounds are to:

- Increase the Zinc-Lead and Copper Resources (upgrade confidence in and convert Exploration Targets to Mineral Resources).
- Determine the extent of the Zinc-Lead, Copper and Gold-Silver Exploration Targets described in this report (follow-up testing of areas into which Exploration Targets are interpreted to extend).
- Evaluate the district potential for discovery of additional base and precious metal VHMS deposits utilising stratigraphy, structure, multi-element geochemistry and IP signatures identified at BKZ (identifying and testing of additional Exploration Targets to those identified in this report).

Work is planned to commence within 12 months of this report with specific programmes to include:

- Drilling for extensions to the existing resources at BKZ (and BKM) where mineralisation is considered open as defined by the Exploration Targets in this report and prospective areas in the 2019 BKM Mineral Resource Report (available at www.asiametresources.com).
- Infill drilling and undertake evaluation of the base metals (Zn-Pb and Cu) and precious metal (Au-Ag) Exploration Targets described in this report, with the aim to upgrade areas of the Targets to Mineral Resources at BKZ.

 Drill testing for additional Base and Precious Metal deposits within the Beruang Kanan Mineral system. Developing Targets for drilling would involve (i) extending the IP coverage, (ii) interpretation and utilisation of multi-element geochemistry on a district scale and (iii) stratigraphic and structural interpretation of the area.

H&A has not reviewed any detailed exploration plans however observes that KSK has a strong recent history of being active and committed in exploring for and advancing prospects within the KSK CoW and assesses that their stated objectives and outlined programmes are in alignment with this observed intent.

Contributing Experts:

Expert Person / Company	Area of Expertise and Contribution of Expert
Mr. Duncan Hackman B.App.Sc., MSc, MAIG.	Exploration and Resource Geology – 36yrs experience. Data
Hackman & Associates Pty. Ltd.	investigations and Exploration Target potential evaluation
Mr. Hari Wisnu ST, CPI	Database Geologist – 27yrs experience. Data validation and
PT Kalimantan Surya Kencana	quality assurance.
Mr. Patrick Creenaune BSc (Hons), MSc, Dip	Exploration and Resource Geology – 41yrs experience covering
Fin & Inv, Fellow AIG.	VHMS, Porphyry Cu, epithermal gold, sediment hosted gold,
Creenaune Geological Consulting	Archean shear hosted gold, slate belt gold and IOCG deposits.
	Geological and mineralisation interpretation.

Compliance with the JORC code assessment criteria and Competent Persons Consent:

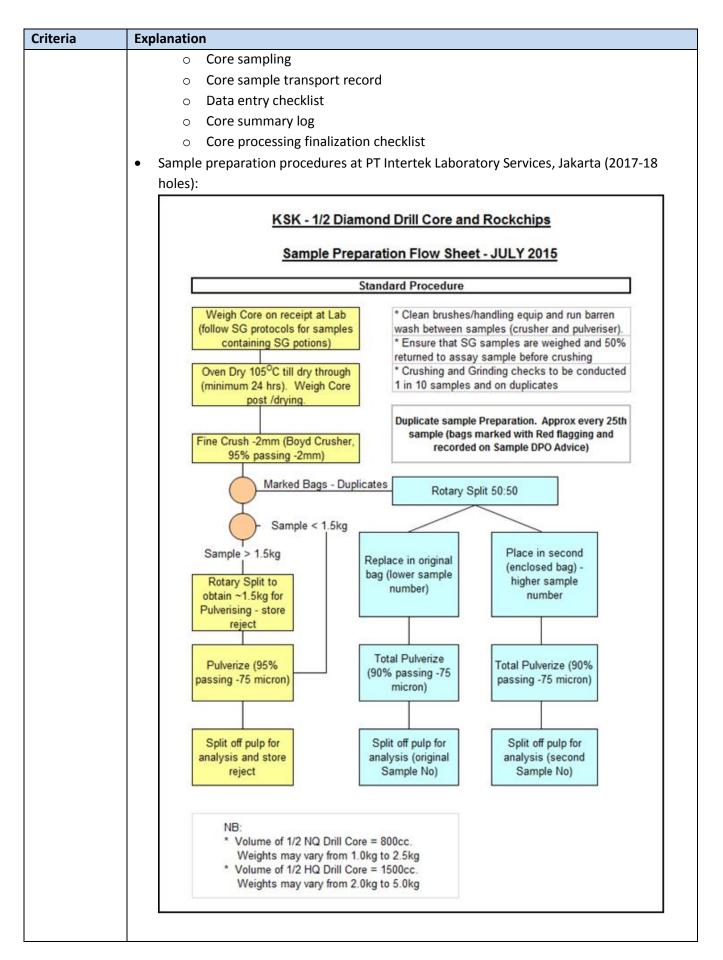
This Exploration Target report has been compiled in accordance with the guidelines defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition).

Duncan Hackman of Hackman & Associates (H&A) is a member of the Australian Institute of Geoscientists and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). Neither Duncan Hackman nor H&A have any material present or contingent interest in the outcomes of the BKZ Polymetallic Project, nor do they have any pecuniary or other interest that could be reasonably regarded as being capable of affecting their independence. H&A's fee for completing this Exploration Target Evaluation and Report is based on its normal professional daily rates plus reimbursement of incidental expenses. The payment of the professional fee is not contingent upon the outcome of the Exploration Target potential at BKZ.

The opinions and recommendations provided by Duncan Hackman are in response to requests of technical basis by Asiamet Resources Limited and based on data and information provided by Asiamet Resources Limited or their agents. Duncan Hackman and H&A therefore accept no liability for commercial decisions or actions resulting from any opinions or recommendations offered within.

Duncan Hackman B.App.Sc., MSc, MAIG Consulting Geologist

This document covering the technical reporting of procedures, observations and outcomes relating to the proposed Exploration Target potential from the BKZ 2022 Base and Precious Metals Exploration Results follows the guidelines defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). H&A presents these procedures, observations and outcomes as outlined in the JORC TABLE 1 checklist of the JORC Code (2012).


Italics and bold text denote details and observations specific to evaluation of the Exploration Targets at BKZ. Normal text denotes global details and observations for the total BKZ project. A list of abbreviations specific to this BKZ Project Exploration Target Explanatory Notes is included following the JORC TABLE 1 checklist report.

Criteria	Explanation					
Sampling	Total at BKZ					
techniques	• 1999 drilling (6 holes), 2017-18 drilling (36 holes) and 2021-22 (30 holes)					
·	Holes delineating Exploration Targets:					
	• 2017-18 drilling (2 holes) and 2021-22 (20 holes). A number of holes intercept more than					
	one target (33 intercepts). Hole intercepts by target:					
	• Zinc-lead target: 2017-18 drilling (1 intercept) and 2021-22 (11 intercepts).					
	• Copper target: 2017-18 drilling (1 intercept) and 2021-22 (4 intercepts).					
	• Upper Gold target: 2021-22 (10 intercepts).					
	 Lower Gold target: 2021-22 (6 intercepts). 					
	Assay samples comprise of 1/2 HQ3 diamond core:					
	 1999: Nominal 2m intervals 					
	 2017-18 and 2021-22: Nominal 1m intervals 					
	 Diamond core saw cut 					
	Geotechnical and recovery logging sampled at drill run-length intervals					
	Structural logging undertaken on core tray intervals					
	Geological and mineralisation logging undertaken on geological/mineralisation intervals					
Drilling	HQ3 diamond drilling					
techniques						
Drill sample	Data collected:					
recovery	 1999, 2017-18 and 2021-22 drilling: Length core recovery = (measurement of 					
	total length of core recovered in tray for each drill run-length) / (length of drill run-length drilled)					
	 2017-18 and 2021-22 drilling: Partial or internal core recovery [or core 					
	condition] = visual inspection of core to assess according to the following four					
	categories:					
	 Extreme: Rubbly core, clear indication of washing and selective recovery 					
	 Moderate: Broken and scrubbed core, short intervals of rubbly core 					
	 Minor: Scrubbed core, short intervals of broken core 					
	 None: complete and intact core 					
	No sub set analysis confining observations to the holes identifying Exploration Targets.					
	Observations for all of BKZ holes:					
	Observations for Length Core Recovery, 2017-18 drilling.					
	 High grade zinc mineralisation: 96% samples with >90%Recovery 					
	 Low grade zinc mineralisation: 91% samples with >90%Recovery 					

Sampling Techniques and Data

Criteria	Explanation
	 Copper mineralisation: 97% samples with >90%Recovery Visual assessment of the 15 mineralised intervals containing the 40 samples with
	≤90% length recovery confirmed that grades of the low recovery samples are comparable with the high recovery samples within the intervals. The inclusion of the low recovery samples in the assay dataset will not present a risk to the 2022 BKZ Project Evaluation.
	Observations for Partial/Internal Core Recovery [core condition], 2017-18 drilling:
	 High grade zinc mineralisation: 25% samples logged as being of moderate and extreme degraded condition. Visually it is not clear if the grades of the poor condition samples are impacted by internal loss. There is an observed relative bias in favour of the good conditioned (no or little internal loss) for Zn and Pb assays and very little difference in grades up to the 80th percentile for Ag and Au assays after which, in the top 20th percentile of the dataset, the poor condition core samples show higher grades.
	 Low grade zinc mineralisation: 31% samples logged as being of moderate and extreme degraded condition. Visually it is not clear if the grades of the poor condition samples are impacted by internal loss. There is an observed relative bias in favour of the poor condition samples (rubble and broken/scrubbed core) for Zn, Pb and Ag assays and low relative bias observed in Au assays for these samples.
	 Copper mineralisation: 14% samples logged as being of moderate and extreme degraded condition. Visually it is not clear if the grades of the poor condition samples are impacted by internal loss. There is an observed relative bias in favour of the poor condition samples (rubble and broken/scrubbed core) for Cu and Ag.
	 At present the low sample count diminishes confidence in interpreting the observations from analyses of the partial or internal core recovery logging. The loss of material appears to have been selective and there are some significant grade tenor shifts observed, however it is a curiosity that not all elements are biased in favour of the same recovery groups (moderate/extreme vs minor/none). Ongoing evaluation with future drilling is imperative to ensure that the risk associated with this core loss is understood and its impact is minimised.
	 Assessment of Length Core Recovery and Partial/Internal Core Recovery [core condition],
	 2021-22 drilling: As the drill intercepts from the 2021-22 drilling programme represent 25% of the
	UPZ mineralised domain and 35% of the LCZ mineralised domain it is considered that their inclusion into the analysis would not significantly alter the observations from the 2018 data evaluation (2017-18 drilling programme review, above) and therefor the evaluation has not been updated to include this data. H&A has, in the course of undertaking the 2022 Exploration Target Evaluation, assessed photographs of all mineralised core did not observed any intervals of increased concern over than described for the 2018 core recovery evaluation.
Logging	 Logging procedures as follows: Simplified coding of logged intervals (100% of core) in the digital dataset describes the geology, structure, mineralization and alteration at BKZ. The core shed logging was validated by review of the core photography and assessed wrt mineralisation styles and grade tenor by Mr Patrick Creenaune in preparation for

Criteria	Explanation
	 use in geological and mineralisation interpretation and resource domaining. There is no oriented core at BKZ, rendering structural measurements of no value. Geotechnical logging (RQD and fractures) was undertaken on all core. Base of oxidation logging for all holes above the UPZ mineralisation was verified by H&A from core photographs.
Sub-sampling techniques and sample preparation	 The onsite processing workflow is as follows (all holes): Core is packed and carried by hand then vehicle from drill sites to the core processing facility at camp (located immediately east of the BKM mineralisation, and 1200m to the southeast of BKZ). Core blocks and tray details are checked and hole depth details recorded on core. Core trays are weighed and photographed wet. Geotechnical and geological logging undertaken. Geotechnical and geological logging undertaken. Geotechnical and geological logging undertaken. Sample intervals are determined by geologists and core is split longitudinally by core saw. Clayey and incompetent core is wrapped in glad-wrap and packing tape prior to cutting. Sampling produces samples ranging in weight between 3kg and 5kg (av. 3.5kg). 6278m of core is sampled at BKZ. Lengthy intervals of nonsulphidic core remains unsampled (5149m, minimum length = 11m, maximum length = 159.6m (excludes sections of holes traversing unmineralised hangingwall volcanics)). CRM Standards, coarse blanks (granite), pulp blanks (certified pulps) and coarse crush duplicates are inserted into the sample sequence (coarse crush duplicates are included within the sampling sequence in preparation for their creation). Core and QC samples are bagged and security lock-tagged for transport to ITS Jakarta (2017-18 drilling) and GeoServices Jakarta (2012-122 drilling). Dispatch paperwork is prepared for the laboratories which includes the list of coarse crush duplicates to be prepared and, for the 2017-18 samples, where SG segments require drying separetely and recombining with the remaining material for their sample intervals before crushing. Half core in trays is photographed both wet and dry. Core block details inscribed onto aluminium tags wh
	 transported by light vehicle to the Tengkiling core shed for rack storing under cover. Chain of custody documentation is completed for the following activities: Drill surveys Core pick-up at rig Core received at camp Core photos Core logging
	 Core geotech-logging Core data collection

Criteria	Explanation		
	Sample preparation procedures at PT GeoServices Laborate laboratory document ID GEO-MIIN-WI-1.011): PT GEOSERVICES – GeoAssay Laboratory	Ory, Jakarta (2 No. Dokumen	2021-22 holes,
		Edisi/ No.Revisi	03/02
	PROSEDUR PREPARASI SAMPEL SEBAGIAN TERHADAP	Tanggal Efektif	29/03/2021
	SAMPEL MINERAL DAN BIJIH TAMBANG LAMPIRAN A – SOP # DIAGRAM ALIR UNTUK PREPARASI SAMPEL S	EBAGIAN	Page 19 of 22
		201	
	SAMPLE PREPARATION PROTOC	Sample Transmittal	Record on Lab worksheet
	EUDIFINITI ROCLINEXTERTS Sample Submission Accuracy Jaw Crusher 6-Amm Sieve for QC checks Rotary Sample Divider/Splitter LM2 Pulverizer LM2 Pulverizer LM2 Pulverizer	ate Jav Crush coarse reject de for laboratory and Store name. DR) ate pulp reject 1:15 pulveriz tabel as sample name.	t 1:25 (Label as ed for
	COPY#1	DOCUMENT TE	RKENDALI
	Partial Sample preparation flowchart for drill core condu	icted by Geoas	says (GA)

Criteria	Explanation
	 1999 holes: There is no record of laboratory preparation procedures for the six 1999 scout
	drill holes. Only three of these holes intercepted mineralisation and the absence of this information is considered of low risk to the 2022 BKZ Project Evaluation.
Quality of	2017-18 holes:
assay data and	Samples were assayed for gold and multi-element determination by the following
laboratory	procedures at PT Intertek Laboratory Services, Jakarta:
tests	 Gold: Intertek Services Method FA30/AA: 30g fire assay, AAS determination: Sample Assay Charge = 30g
	 FA flux = 150g
	 Digest Method = Fire Assay
	 Analytical method = Atomic Absorption Spectroscopy
	 Lower Detection = 0.01ppm
	 Upper Detection = 50ppm
	 Routine Copper, Lead, Zinc, Silver and Iron Assay: three acid digest, ICP-OES Determination:
	 Sample Assay Charge = 0.5g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Optical Emission Spectroscopy
	 Lower Detection = Ag 0.5ppm, Cu 2ppm, Fe 2ppm, Pb 2ppm, Zn 2ppm
	Upper Detection = Ag 500ppm, Cu 10%, Fe 20%, Pb 10%, Zn 10%
	 Over Range Copper, Lead, Zinc, Silver and Iron Assay: three acid digest, AAS determination:
	 Sample Assay Charge = 0.25g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Atomic Absorption Spectroscopy
	 Lower Detection = Ag 5ppm, Cu 0.01%, Fe 0.01%, Pb 0.01%, Zn 0.01%
	 Upper Detection = Ag 1000ppm, Cu 50%, Fe Max, Pb Max, Zn Max
	 BKM copper standards were inserted into the first 25 assay batches as permitting issues delayed the importation of preferred zinc/lead base metal standards into these batches. All assay batches for the 10 holes intersecting the Lower Copper Zone copper mineralisation ("LCZ") have appropriate certified copper standards included for QC evaluation; however the exclusion of zinc and lead standards in these
	 batches negates the assessment of assay reliability for the samples from the thin zinc/lead domain overlying the copper mineralisation. Nine of the 26 holes drilled into the Upper Polymetallic Zone zinc/lead mineralisation ("UPZ") contain appropriate zinc/lead/silver/gold certified standards to assist in assay quality assessment.
	 15 of the twenty-six holes drilled into the UPZ mineralisation to the north of the copper mineralisation were analysed without certified zinc/lead/silver standards having only the BKM copper standards inserted into assay batches.
	 Nominal QC insertion rates (as percentage of routine samples): KSK (Client):

Criteria	Explanation
	Certified Reference Material Standards: 5-6%
	 Coarse Crush Granite Blanks: 2%
	 Certified Pulp Blanks: 2%
	 Coarse Crush Duplicates: 4%
	• ITS (Laboratory):
	 Certified Reference Material Standards: 6-8%
	 Certified Pulp Blanks: 3% Second Change Device the Strength of S
	 Second Charge Duplicates: 6% Dependent Chargle Assess Duplicates: 5%
	 Repeat Check Assay Duplicates: 5% Sieve Sizing Analysis (2mm - 200mach): 10%
	 Sieve Sizing Analysis (-2mm, -200mesh): 10% Umpire Laboratory Assay Checks are yet to be undertaken
	 Umpire Laboratory Assay Checks are yet to be undertaken. Assay quality assessment was undertaken by assessing QC data for evidence of sample
	preparation and analytical contamination (coarse and pulp blanks), analytical accuracy
	(standards), analytical precision (standards, duplicates and repeats) and
	sample/reporting mix-ups (all QC samples). Findings:
	• There is no evidence of sample or reporting mix-ups.
	 Coarse and Pulp blanks show no evidence of contamination.
	 Shewart control charts of client and Laboratory Standards show analytical
	accuracy and precision at acceptable levels for reporting Exploration Results at
	BKZ for all batches for Cu, Zn, Pb, Ag and Au assays. Of note, the 15 holes where
	appropriate Client Standards were omitted for determining reliability of Zn, Pb,
	Ag and Au assays show acceptable accuracy and precision in the Client Cu
	Standards and the Laboratory Zn, Pb Ag and Au Standards. Verification of the
	robustness of assays from these holes must be confirmed by appropriate
	reassaying/umpire laboratory programmes before resources they underpin can
	be considered for resource categories higher than Inferred Resources (i.e.
	 Indicated and Measured Resources, JORC 2012). Coarse Crush Duplicate and Lab Repeat Duplicate samples show acceptable
	 Coarse Crush Duplicate and Lab Repeat Duplicate samples show acceptable precision for assays underpinning the 2022 BKZ Project Evaluation. Of interest is
	the excellent alignment of duplicate sample Au grades (also observed in the
	2021-22 QC results). This feature of the QC and/or mineralisation requires
	investigation and confirmation before Indicated or Measured Mineral Resources
	be considered for future gold resources at BKZ (JORC, 2012).
	2021-22 holes:
	Samples were assayed for gold and multi-element determination by the following
	procedures at PT GeoServices, GeoAssay Laboratory, Jakarta:
	 Gold: GeoServices Method FAA30: 30g fire assay, AAS determination:
	 Sample Assay Charge = 30g
	 Digest Method = Fire Assay
	 Analytical method = Atomic Absorption Spectroscopy
	 Lower Detection = 0.01ppm
	 Upper Detection = 50ppm
	• Routine Copper, Lead, Zinc, Silver and Iron Assay: GeoServices Method GAI03:
	three acid digest, ICP-OES Determination:
	 Sample Assay Charge = 0.5g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Optical Emission Spectroscopy

Criteria	Explanation
	 Lower Detection = Ag 0.5ppm, Cu 1ppm, Fe 0.01%, Pb 5ppm, Zn 5ppm
	Upper Detection = Ag 200ppm, Cu 1%, Fe 25%, Pb 1%, Zn 1%
	• Over Range Copper, Lead, Zinc, Silver and Iron Assay: GeoServices Method
	GOA03: three acid digest, AAS determination:
	 Sample Assay Charge = 0.2g
	 Digest Method = 3 Acid Digest (HCl, HNO₃ & HClO₄)
	 Analytical method = Atomic Absorption Spectroscopy
	 Lower Detection = Ag 5ppm, Cu 0.01%, Fe 0.01%, Pb 0.01%, Zn 0.01%
	 Upper Detection = Ag 50000ppm, Cu Max, Fe Max, Pb 70%, Zn Max
	 Polymetallic OREAS standards were inserted into all batches (Standard IDs: OREAS [151b,
	620, 621, 905, 906, 907)
	 Nominal QC insertion rates (as percentage of routine samples):
	• KSK (Client):
	 Certified Reference Material Standards: 4-6%
	 Coarse Crush Granite Blanks: 1-2%
	 Certified Pulp Blanks: 4%
	 Coarse Crush Duplicates: 4-6%
	 PT GeoServices (Laboratory):
	 Certified Reference Material Standards: FAA30 4%; GAI03 and GOA03 3%
	 Certified Pulp Blanks: 2%
	 Second Charge Duplicates: 7%
	 Repeat Check Assay Duplicates: Au 5%, ME Assays 10% Size Size Assays in (220 million) 10 148%
	 Sieve Sizing Analysis (-2mm, -200mesh): 10-14%
	• Umpire Laboratory Assay Checks are yet to be undertaken.
	• Assay quality assessment was undertaken by Hari Wisnu (KSK staff) and reviewed by Duncan Hackman (H&A) who assessed QC reports and work-files for evidence of sample preparation and analytical contamination (coarse and pulp blanks), analytical accuracy
	(standards), analytical precision (standards, duplicates and repeats) and
	sample/reporting mix-ups (all QC samples). Findings:
	 The Client Standards and Blanks datasets show evidence of occasional sample
	mix-up or insertion errors.
	 Coarse and Pulp Blanks show no evidence of material carry-over or
	contamination (when results indicating sample mix-up or insertion error are omitted from dataset).
	 Shewart control charts of client and Laboratory Standards show analytical
	accuracy and precision at acceptable levels for reporting of Exploration Targets
	at BKZ for all batches for Au, Ag, Cu and Pb assays. The Zn assays show two
	distinct periods of precision and accuracy at GeoServices where:
	 Prior to Batch BKZ030: high variance is observed in high grade Zn standards (>1% Zn) and accontable results for low grade Zn standards
	standards (>1% Zn) and acceptable results for low grade Zn standards (<200ppm Zn) and
	 Batches BKZ030 to project completion: low variance and acceptable
	accuracy is observed in high grade Zn standards (>1% Zn) and
	unacceptable low results are observed for low grade Zn standards
	(<200ppm Zn).
	 An explanation on the reasons for the two periods is yet to be supplied. Coarse Crush Duplicate samples show acceptable precision for assays
	 Coarse Crush Duplicate samples show acceptable precision for assays underpinning the 2022 BKZ Project Evaluation. Of interest is the excellent

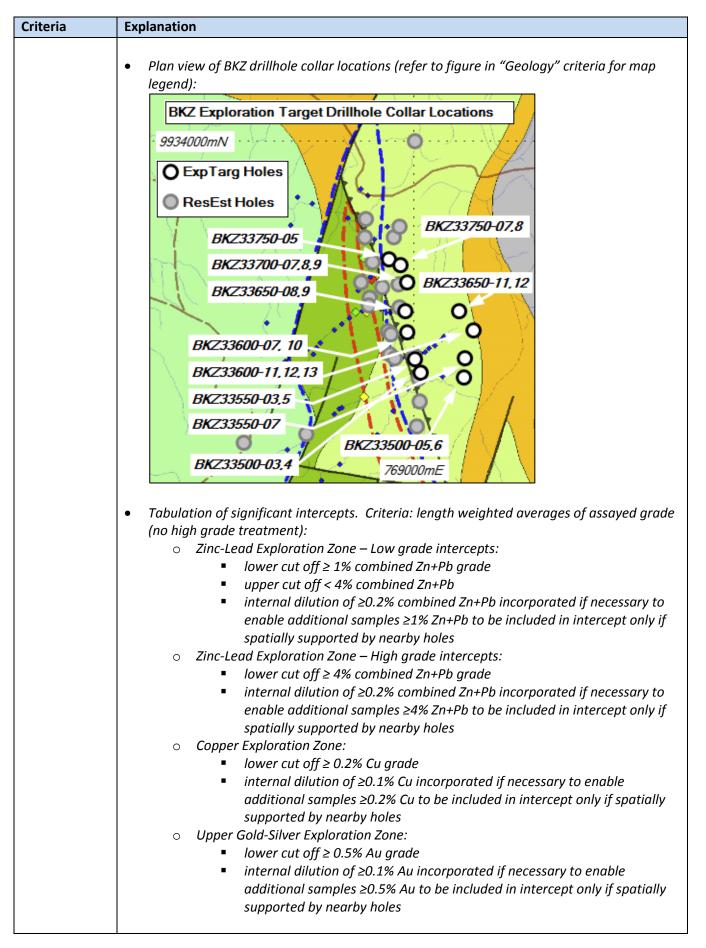
Criteria	Explanation
	 alignment of duplicate sample Au grades (also observed in the 2017-18 QC results). This feature of the QC and/or mineralisation requires investigation and confirmation before Indicated or Measured Mineral Resources be considered for future gold resources at BKZ (JORC, 2012). The GeoServices standards and blanks QC results were presented as graphs when requested from the Lab. Batch ID details are not included. The standards show two periods of precision for all elements of interest, which requires investigation, as the changes in precision may correspond with the observed change in the Zn assays of the KSK inserted standards. H&A suspects that a either an undeclared breach of, or change in protocols has occurred or an instrument has been compromised as these events can result in the sharp changes observed.
	1999 holes:
	• There is no QC data available for the six scout holes drilled in 1999. Only three of these holes intercepted mineralisation in areas where follow-up 2017 drilling confirms the intercepts. These holes are not included in the evaluation of Exploration Targets at BKZ.
	The observed assay QC issues are inhibiting regarding the classification of Mineral Resources and must be addressed, suitably understood and if necessary, the reliability of drillhole assay data reliant on this QC must be established by either additional or alternative assay programmes. The assay data is however reliable for the evaluation of Exploratioon Targets at BKZ.
Verification of	• Twin holes, BKZ33600-[02, 04] drilled approximately 4m apart in the LCZ mineralisation
sampling and	show repeatability of the mineralised intercept length and grade tenor as shown in the
assaying	following table: Hole From To Interval Cu (%) Au (ppm) Ag (ppm) Fe (%) Pb (%) Zn (%)
	BKZ33600-02 41.0 43.0 2.0 0.85 0.14 14.85 29 0.10 0.25
	BKZ33600-04 40.0 42.0 2.0 0.71 0.18 13.75 31 0.15 0.42 BKZ33600-02 60.0 88.3 28.3 1.56 0.15 41.40 14 0.22 0.02
	BKZ33600-02 50.0 58.5 28.5 1.36 0.15 41.40 14 0.22 0.02 BKZ33600-04 58.0 87.5 29.5 1.86 0.15 50.40 14 0.52 0.08
	• Three holes, BKZ33600-[05, 07, 09] drilled within 20m of each other in the LCZ mineralisation show comparable mineralised intercept length and grade tenor as shown in the following table:
	Hole From To Interval Cu (%) Au (ppm) Ag (ppm) Fe (%) Pb (%) Zn (%)
	BKZ33600-05 75.15 100.00 24.85 1.38 0.15 18.78 14 2.72 0.02 BKZ33600-07 79.00 100.00 21.00 1.13 0.23 12.09 22 1.02 0.03
	BKZ33600-07 79.00 100.00 21.00 1.13 0.23 12.09 22 1.02 0.03 BKZ33600-09 89.00 106.00 17.00 3.94 0.18 69.32 14 6.94 0.03

Criteria	Explanation											
	Proximally loca	ated and cros	s holes	are co	mmor	n in the	UPZ as	multip	le hol	es ar	e coll	ared
	from sparsely							•				
	westerly orien				•				•			
	intercept deta				-	-				,		
	intercept deta						Jaracior					
	Hole Association	Hole	From	То	Interval	Pb (%)	Zn (%)	Ag (ppm)	Au (pi	om) C	u (%)	Fe (%)
	W drilled; 11m	BKZ33600-01	34.0	38.0	4.0	3.99	9.10	60.42		0.21	0.08	9.0
	separation	BKZ33600-08	36.0	41.5	5.5	4.05	9.59	64.16	5 (0.14	0.13	13.0
	Vertical; 7m	BKZ33600-02	31.0	41.0	10.0	0.42	4.23	10.41	L (0.15	0.29	15.0
	separation	BKZ33600-06	29.8	40.0	10.2	1.60	4.99	19.08		0.18	0.23	15.0
	E drilled; 11m	BKZ33600-05	36.5	46.0	9.5	0.68	4.90	16.17	-	0.09	0.11	9.0
	separation	BKZ33600-09 BKZ33650-01	40.0 43.0	54.0 73.0	14.0 30.0	0.59 2.19	2.26 8.75	19.18 44.56	-	0.04 0.36	0.12	10.0 8.0
	E-W cross holes	BKZ33650-01 BKZ33650-03	26.0	69.0	43.0	2.15	6.73	30.63		0.49	0.34	10.0
		BKZ-3	14.6	47.0	32.4	1.82	4.64	26.23		0.34	0.07	
	N-S cross holes	BKZ33650-04	15.0	40.0	25.0	2.02	5.99	32.09) (0.32	0.20	8.0
	W drilled; 12m	BKZ33700-02	41.0	80.0	39.0	2.35	7.32	33.03		0.33	0.18	9.0
	separation	BKZ33700-03	13.0	54.0	41.0	2.45	6.31	29.92		0.41	0.14	7.0
	W drilled; 10m	BKZ33750-03	22.5	44.0	21.5	3.86	9.06	365.10		0.30	0.19	9.0
	separation	BKZ33750-06	22.5	33.5	11.0	4.91	11.31	181.34	+ (0.71	0.20	10.0
	The following table are significant diff between the holes of the zone. The h	erences in go drilled in the	ld and si down d	ilver g lip dir	rade to ection	enors be and tho	etween se orier	the cro nted or	ossed thogo	holes onal t	s and o the	
	are significant difference between the holes	erences in go drilled in the igh variability laced on any	ld and si down d of grac estimat	ilver g lip dir le sha te und	rade to ection wn in t lerpinn	enors be and tho these cr	etween se orier ossed h	the cro nted or oles co	ossed thogo onvert	holes onal t ts to l	s and o the ow	dip
	are significant diffe between the holes of the zone. The h confidence being p and density in the	erences in go drilled in the igh variability laced on any gold Explorat	ld and si down d of grac estimat ion Targ	ilver g lip din le sho te und get an	rade to ection wn in t lerpinn eas.	enors bo and tho these cr ed by th	etween se orier ossed h ne curre	the cro nted or oles co nt dril	ossed thogo onvert ling co	holes onal t s to l onfig	s and to the low uratio	dip on
	are significant diffe between the holes of the zone. The h confidence being p	erences in go drilled in the igh variability laced on any gold Explorat Hole	ld and si down d of grac estimat ion Targ	ilver g lip dir de sho te und get ar	rade to ection wn in t lerpinn eas. Interval	enors be and tho these cr ed by th Au (ppm)	etween se orier ossed h ne curre Ag (ppm)	the cro oted or oles co ont dril	ossed thogo onvert ling co Pb (%)	holes onal t s to l onfig Zn (%)	s and o the ow uratio	dip on
	are significant diffe between the holes of the zone. The h confidence being p and density in the Hole Association	erences in go drilled in the igh variability laced on any gold Explorat Hole ³⁶⁰⁰⁻¹⁰ BKZ3360 tes true	ld and si down d v of grad estimat ion Targ From 0-10 83.5	ilver g lip dird de sho te und get ar 181.9	ection wn in t lerpinn eas. Interval 98.4	enors be and tho these cr ed by th <u>Au (ppm)</u> 2.45	etween se orier ossed h ne curre Ag (ppm) 546.6	the cro oted or oles co nt dril 0.24	ossed thogc onvert ling co Pb (%) 4.95	holes onal t s to l onfige <u>Zn (%)</u> 0.01	s and o the ow uratio <u>Fe (%</u> 9.1	dip on
	are significant diffe between the holes of the zone. The h confidence being p and density in the <u>Hole Association</u> E-W crossed holes. BK23 down dip direction.	erences in go drilled in the igh variability laced on any gold Explorat Hole ³⁶⁰⁰⁻¹⁰ BKZ3360 tes true	ld and si down d v of grac estimat ion Targ 0-10 83.5 0-12 185.8	ilver g lip dird de sha te una get ar 181.9 181.9	Interval 98.4 21.2	enors be and tho these cr ed by th <u>Au (ppm)</u> 2.45 1.05	etween se orier ossed h ne curre Ag (ppm) 546.6 82.7	the cro oted or oles co nt dril.	ossed thogc onvert ling co Pb (%) 4.95 0.18	holes onal t s to l onfigu <u>Zn (%)</u> 0.01	s and o the ow uration <u>Fe (%</u> 9.1	dip on
	are significant diffe between the holes of the zone. The h confidence being p and density in the Hole Association E-W crossed holes. BKZ3 down dip direction. BKZ33600-12 approximat thickness E-W crossed holes. BKZ3 down dip direction.	erences in go drilled in the igh variability laced on any gold Explorat Hole 3600-10 BKZ3360 tes true BKZ3360 BKZ3365	ld and si down d v of grac estimat ion Targ 0-10 83.5 0-12 185.8 119.0	ilver g lip dird le sha te und get ar 181.9 207.0 131.5	Interval 98.4 21.2 12.5	enors be and tho these cr ed by th 2.45 1.05 0.57	etween se orier ossed h ne curre Ag (ppm) 546.6 82.7 117.8	the cro oted or oles cc nt dril 0.24 0.02 0.04	ossed thogconvert ling co Pb (%) 4.95 0.18 1.77	holes onal t s to f onfige <u>Zn (%)</u> 0.01 0.03	s and o the ow uratic <u>Fe (%</u> 9.1 5.4	<i>dip</i>
	are significant diffe between the holes of the zone. The h confidence being p and density in the Hole Association E-W crossed holes. BKZ3 down dip direction. BKZ33600-12 approximat thickness E-W crossed holes. BKZ3	erences in go drilled in the igh variability laced on any gold Explorat Hole 3600-10 BKZ3360 tes true BKZ3365 tes true	ld and si down d v of grac estimat ion Targ 0-10 83.5 0-12 185.8 119.0 149.5	ilver g lip dird de sha te und get ard 181.9 207.0 131.5 199.6	Interval 98.4 21.2 50.1	enors be and tho these cr ed by th 2.45 1.05 0.57 3.09	etween se orier ossed h ne curre <u>Ag (ppm)</u> 546.6 82.7 117.8 108.4	the cro oted or oles cc nt dril 0.24 0.02 0.04 0.06	Dssed thogc Drivert ling CO Pb (%) 4.95 0.18 1.77 0.74	holes onal t s to l onfig 0.01 0.01 0.03 0.03	s and o the ow uratio 9.1 5.4 7.1 7.1	dip on 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	 are significant difference between the holes of the zone. The holes of the zone. The hole confidence being performed and density in the second density is the second density in the second density in the second density is the second density in the second density in the second density is the second densecond density is the second density is the second density is	erences in go drilled in the igh variability laced on any gold Explorat Hole 3600-10 BKZ3360 BKZ3365 tes true BKZ3365 h no indepen	ld and si down d v of grac estimat ion Targ 0-10 83.5 0-12 185.8 0-12 185.8 0-12 165.6 dent dri	ilver g lip dird de sho te und get ard 181.9 207.0 131.5 199.6 197.0	Interval 98.4 21.2 50.1 31.4	enors be and tho these cr ed by th 2.45 1.05 0.57 3.09 2.53 the BKZ	etween se orier ossed h ne curre 546.6 82.7 117.8 108.4 252.5	the cro nted or oles co nt dril 0.24 0.02 0.04 0.06 0.04	Dessed thogo onvertiling ling 4.95 0.18 1.77 0.74 1.44	holes onal t s to l onfig 0.01 0.03 0.03 0.03	s and o the ow uratic 9.0 5.4 7.0 7.1 11.7	<i>dip</i> on 4
	are significant diffe between the holes of the zone. The h confidence being p and density in the Hole Association E-W crossed holes. BK23 down dip direction. BK233600-12 approximat thickness E-W crossed holes. BK23 down dip direction. BK233650-12 approximat thickness • There has bee • Assay data wa GeoServices La data processes assays in both	erences in gol drilled in the igh variability laced on any gold Explorat BKZ3360 BKZ3365 tes true BKZ3365 bes true BKZ3365 m no indepen s compiled in aboratory SIF s and stored i datasets wer	ld and si down d v of grad estimat ion Targ 0-10 83.5 0-12 185.8 0-12 185.8 0-12 165.6 dent dri depend files by n a Min- e crosso	ilver g lip dir de sho te und get ar 181.9 207.0 131.5 199.6 197.0 Il-test ently KSK (<i>i</i> esight	Interval 98.4 21.2 12.5 50.1 31.4 cing of from s Access ™ TOF ed and	enors be and tho these cr ed by th 2.45 1.05 0.57 3.09 2.53 the BKZ ite dispa ™ datal RQUE da validate	etween se orier ossed h ne curre Ag (ppm) 546.6 82.7 117.8 108.4 252.5 C minera atch adv base pro atabase ed as be	the cro oted or oles co nt dril 0.24 0.02 0.04 0.06 0.04 0.06 0.04	Dessed thogc onvert ling co 4.95 0.18 1.77 0.74 1.44 in. eets a s) and r to es	holes onal t s to l onfig 0.01 0.03 0.03 0.03 0.03	Fe (% 9,1 5,4 7,1 11,7 he ITS A (VB) ation	dip on 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
-ocation of	 are significant difference between the holess of the zone. The holes of the zone. The holes of the zone is the confidence being point and density in the second density is the second density	erences in go drilled in the igh variability laced on any gold Explorat BKZ3360 BKZ3365 BKZ365 BK	ld and si down d vof grad estimat ion Targ 0-10 83.5 0-12 185.8 0-12 185.8 119.0 149.5 0-12 165.6 dent dri depend files by n a Mine e crosso sample	ilver g lip dir de sho te und get ar 181.9 207.0 131.5 199.6 199.6 199.6 199.6 199.6 199.6 tently KSK (A esight checke inter	Interval 98.4 21.2 12.5 50.1 31.4 ing of from s Access ™ TOF ed and vals an	enors be and tho these cr ed by th 2.45 1.05 0.57 3.09 2.53 the BKZ ite dispa ™ datal RQUE da validate d assay	etween se orier ossed h ne curre Ag (ppm) 546.6 82.7 117.8 108.4 252.5 C minera atch ad base pro atabase ed as be data).	the cro oted or oles co nt dril. 0.24 0.02 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04	Dessed thogc onvert ling co 4.95 0.18 1.77 0.74 1.44 in. eets a s) and r to es	holes onal t s to l onfig 0.01 0.03 0.03 0.03 0.03	Fe (% 9,1 5,4 7,1 11,7 he ITS A (VB) ation	dip on 1 2 3 3 5 5 3 5 5 3 5 5 5 5 5 5 5 5 5 7 7
Location of data	are significant diffe between the holes of the zone. The h confidence being p and density in the <u>Hole Association</u> E-W crossed holes. BKZ3 down dip direction. BKZ33600-12 approximat thickness E-W crossed holes. BKZ3 down dip direction. BKZ33650-12 approximat thickness • There has bee • Assay data wa GeoServices La data processes assays in both of the source f	erences in go drilled in the igh variability laced on any gold Explorat BKZ3360 tes true BKZ3365 tes true BKZ3365 tes true BKZ3365 n no indepen s compiled in aboratory SIF s and stored i datasets wer iles (both for lertaken and ontrol is by us	ld and si down d v of grad estimat ion Targ 0-10 83.5 0-12 185.8 0-12 185.8 0-12 165.6 dent dri depend files by n a Minu- re crosso sample recorde se of LID	ilver g lip dir de sha te und get ar 181.9 207.0 131.5 199.6 197.0 Il-test ently KSK (esight checke inter d in V DAR su	Interval 98.4 21.2 12.5 50.1 31.4 cing of from s Access ™ TOF ed and vals an VGS84,	enors be and tho these cr ed by th 2.45 1.05 0.57 3.09 2.53 the BKZ ite dispa XQUE da validate d assay , UTM Z	etween se orier ossed h ne curre 546.6 82.7 117.8 108.4 252.5 C minera atch adr base pro atabase ed as be data). one 495	the cro oted or oles co nt dril 0.24 0.02 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04	Dessed thogc onvert ling co 4.95 0.18 1.77 0.74 1.44 on. eets a s) and r to e ue rep	holes onal t s to l onfigu 0.01 0.03 0.03 0.03 0.03 0.03 0.03	Fe (% o the ow uration 9,1 5,4 7,1 7,1 7,1 11,7 he ITS A (VB, ation ntation	S and A the ons

Criteria	Explanation
	 two benchmarks immediately north of BKZ and traversed from the southernmost located benchmark via a closed loop to drillhole collars using a Leica TS 09 series instrument. The locations (including RLs) were checked against the LIDAR topographic surface and the maximum difference for all holes of 3.6m between the surveyed RL and the LIDAR RL instils confidence that the holes have been correctly identified and their collar locations are well known (32 holes show RL differences of less than 2m). For spatial consistency the LIDAR RL has been used in locating holes in the BKZ Project Evaluation. Downhole surveys have been conducted using a single shot electronic survey instrument. Initial surveys are taken at 5 metres then at every 20m downhole point. 2017-18 drilling: Consecutive surveys are consistent with expected deviations experienced in HQ drilling utilising a 1.5m core barrel. The deepest mineralised intervals are between 100m and 140m, downhole length. Given the shallow attitude of the mineralisation, any errors in downhole surveys will have minimal impact on the reliability of the BKZ sample locations. 2021-22 drilling: Evaluation of, and QC checks on surveys during drilling identified that the survey instrument was alfunctioning between the periods: 17th August 2021 to 26th October 2021 (when a replacement instrument was received) impacting on the confidence in sample locations for holes BKZ33750-107-08, BKZ33600-107-08, BKZ33650-107-08, BKZ33700-07, BKZ33650-107-08, BKZ33700-07, BKZ33750-07, BKZ33650-107-08, BKZ33700-07, BKZ33750-07, BKZ3375
Data spacing and distribution	 The BKZ mineralisation has been delineated by 72 diamond drill holes (11, 427m), drilled on nominal 50m sections. Angled holes are drilled between -50 and -75 degrees and 16 are drilled towards 270° grid, 23 holes towards 090°, 3 holes are drilled towards 000° and 3 drilled towards 180°. A further 27 holes are drilled vertically (-80 to -90 degrees). A set of twin holes in each of the UPZ and LCZ domains support grade continuity over short ranges as do two crossed-hole pairs in the UPZ. A further four sets (UPZ) and three sets (LCZ) of holes spaced between 10m and 20m add further support to grade continuity. The drill programme (hole spacing and orientations) has established both broad geological and grade continuity for these two domains. Holes drilled into the Zinc-Lead and Copper Exploration Target volumes are included in the above descriptions, however, as most intercepts are narrow (21 of 29 are <5m), the

Criteria	Explanation
	 hole spacing is broad (mostly >50m) and the evaluation of the potential is rudimentary, any consideration of grade vs drill direction has not been considered in the evaluation of Exploration Targets in these zones. Drill trace orientations relative to the interpreted mineralisation geometries are orthogonal in the west to obliquely down-dip in the east for the Zinc-Lead zone, and unknown for the sparsely drilled copper zone. Confidence in both grade and tonnage continuity are the key factors withholding intercepts in these volumes from being considered for inclusion into the adjoining UPZ and LCZ Mineral Resource domains. Both the Upper and Lower Gold Exploration Targets are drilled at >50m spacing. The High variability of grade is shown in crossed holes drilled into the Upper Gold Zone which converts to low confidence being placed on any estimate of gold or silver grades for zones. There has been no physical compositing of sample material prior to assaying.
Orientation of data in relation to geological structure	 Drilling is oriented favourably for testing the overall geometry of the shallowly easterly dipping mineralised bodies in the UPZ and the flat to shallowly westerly dipping mineralised bodies in the LCZ. The drilling into the LCZ has led to the interpretation of three shallowly easterly dipping mineralised domains which coalesce at 9936600N. It is however possible that the long mineralised intercepts in holes along 9933600N are apparent lengths caused by low angle intersection of cross-structures sup-parallel to this section. Drilling in the Zinc-Lead Exploration Target zone (12 holes) ranges from orthogonal, to the interpreted mineralisation geometry in the west, through to acute angles in the down-dip direction in the east. This relationship, coupled with the mostly narrow intercepts leads to low confidence being placed on any estimate of the likely size or grade of a mineralised body generated from these intercepts. The four holes identifying the Copper Exploration Target zone are interpreted to intersect a sup-horizontal body of mineralisation, however it is equally probable that they intersect a series of en echelon steeply dipping structures as the drilling configuration and scarcity is such that any number of relationships between drill orientation and geological structure is viable. There are no geological observations of or measurements taken from drill core to assist in determining the drill orientation to structure relationship. Seven of the eleven drill intercepts being more than double that of the interpreted true thickness of the zone. This observation, coupled with the significant difference observed between average grades of the orthogonal (low) vs the oblique intercepts (high) in two crossed hole pairs, leads to low confidence in any estimate of grade for this gold zone. It appears that the six drill intercepts into the LOPP fold Exploration Target zone are oriented from close to orthogonal (western area) up to 45deg to orthogonal
Sample security	 relationship between grade and drill hole orientation in this zone. Chain of custody procedures and record keeping are employed for all core/sample handling and handover protocols. Numbered sample bag zip-lock ties are utilised to monitor security of samples in transit. ITS and GeoServices have not reported any suspected tampering of samples received at the laboratory. Sample security within the laboratories is not monitored by KSK other than by checking for contamination and sample/reporting mix-up through QA/QC sample insertion and evaluation of their assay

Criteria	Explanation
	results.
Audits or	 No sample audits or reviews were undertaken during the drilling of the BKZ
reviews	mineralisation.


Reporting of Exploration Results

Criteria	Explanation
Mineral tenement and land tenure status	 PT Kalimantan Surya Kencana (KSK, incorporated in Indonesia) is the 100% owner of the 6th generation Contract of Work (KSK CoW) within which BKZ is located. KSK in turn is owned 75% by Indokal Limited (incorporated in Hong Kong) and 25% by PT Pancaran Cahaya Kahayan (incorporated in Indonesia). Indokal Limited owns 99% of PT Pancaran Cahaya Kahayan with the remaining 1% owned by Mr. Mansur Geiger, held in trust for Asiamet Resources Limited (H&A is yet to sight documentation to confirm this agreement). The parent company to the corporate structure is a Bermuda company, Asiamet Resources Limited (AMR), which is a publically listed company on the AIM (London) stock exchange. AMR owns 100% of the shares in Indokal Limited. KSK has provided a letter to H&A (dated 29th April 2022) listing the current status of the CoW and permitting including the progress in converting it to a Definitive Production License. KSK states that: The CoW is currently subject of Amendment of Contract of Work (dated 14 March 2018); They have complied with all requirements stated in permits covering the CoW and are of good standing with the Government of Indonesia; They have received Conditional Approval for Use of the Forestry Area from the Ministry of Environment and Forestry after the Advance Exploration permit expired on 22 April 2022; Following the completion of licence conditions (to be undertaken within 1 year from 22 April 2022), the Definitive Production License will be issued and valid for 30 years.
Exploration done by other parties	• KSK is the only operator to have worked on the BKZ Polymetallic Project.
Geology	 The Beruang Kanan District (BKM, BKZ, BKW and BKS) was mapped in late 2017 to early 2018 by Sean Westbrook of Ore Technics Sdn Bhd, a Malaysian based geological consulting group. The area geology is described as follows: The geology of the Beruang Kanan District consists of a volcano-sedimentary succession of compositionally and texturally diverse dacitic to andesitic volcanics and associated volcaniclastics intercalated with marine sedimentary sequences. The lithostratigraphic associations are consistent with being deposited in a moderate to deep, below wave base submarine setting. The volcano-sedimentary succession is intruded by dioritic-andesitic stocks and dykes of the Sintang Intrusive suite. To the south of BKZ the BKM copper mineralisation is hosted within a sequence of extensive andesitic volcanic lavas and breccias of the Beruang Andesitic Volcanics formation within the footwall zone to the Beruang Thrust. Copper Mineralisation in the Lower Copper Zone at BKZ shows strong similarities to BKM. The BKZ Upper Polymetallic Zn-Pb-Ag mineralisation however is hosted

Criteria	Explanation
	 with in the Eastern Volcaniclastics that overly the copper mineralised Beruang Andesite unit. At regional scale both BKM and BKZ Mineralisation is coincident with strong Silica, Sericite-Chlorite-Clay Alteration zones, with higher grades and consistent mineralisation associated with the central core of Silica Alteration (+/-Sericite- Chlorite-Clay Alteration). Mineralisation continuity and tenor decreases away from the central Silica core within the peripheral Sericite-Chlorite-Clay Alteration ("SCC") which can be non-mineralised at distances greater than 200m from the silicified zones. In detail, at BKZ the mineralisation consists of an Upper Polymetallic (Zn-Pb-Ag- Au) Zone and a Lower (Cu-Ag) Zone. The Upper Polymetallic Zone consists of semi-massive to massive replacement style sphalerite-galena mineralisation hosted mainly in the Eastern Volcaniclastics and associated with intense SCC and variable silici alteration. The Lower Zone copper mineralisation consists of stockwork quartz-sulphide and sulphide veins (pyrite-chalcopyrite-bornite) within Beruang Andesitic Volcanics and is associated with intense, pervasive, texturally destructive silica alteration. The Lower Copper Zone mineralisation shows many similarities to mineralisation at BKM, being hosted within an inner silica alteration core with an enveloping outer zone of sericite-chlorite-clay alteration.
	BKZ 9934000ml Eastern Sediments Interbedded volcaniciastics and stone-shale sequence. Central Volcaniciastic sandstone, breccia, sitistone, shale and congolmerate. Typically crsystal-rich (quartz-feldspar phyric volcaniciastic guartz to quartz-feldspar phyric volcaniciastic to andesitic guartz to quartz-feldspar phyric volcaniciastic to exocia, tuff, sandstone, sitistone and shale. Andesite Dominantly dactic to andesitic guartz to quartz-feldspar phyric volcaniciastic and topyrotic and tapastic therecia, tuff, sandstone, sitistone and shale. Andesite Dominantly monolithic andesitic breccia and lavas. Breccia's spically quench and flow related, including autobrecia, hyralocatic and pepperite. Late Intrusives Feldspar-hombiende phyric microdionite intrusives. Typically magnetic. BKM 9933000ml Selica Alteration Zone BKZ Polymetallic Project Geology Fault - position accurate or approximate Trust Fault - position accurate or approximate
	(Sean Westbrook, 2018) Thrust Fault - position accurate or approximate
	The 2021-22 drilling has identified gold-silver mineralisation within silica-hematite altered volcanics immediately east of the Lower Copper Zone mineralisation. The alteration

The 2021-22 drilling has identified gold-silver mineralisation within silica-hematite altered volcanics immediately east of the Lower Copper Zone mineralisation. The alteration associated with this mineralisation is significantly more destructive than that associated with the copper mineralisation and may represent the core of the alteration associated with the copper and gold-silver mineralisation.

	Explanation										
Drill hole Information	 on nomi are drille and 3 dr A set of short ran sets (LC2 continui Drill spa intercep interpret in the ec There ar minerali similar of correspon Seven of oriented had resu thicknes 	cing in the Zi ts are mostly ted mineralis ast for the Zin sation as tha observations onding Miner the eleven a obliquely ac lobliquely ac sof the zone	ions. Ang 70° grid, 3 5 180°. A each of t vo crossed aced betw <i>inc-Lead c</i> <i>crossed h</i> <i>crossed h</i> <i>crossed h</i> <i>tr modelle</i> <i>will apply</i> <i>al Resour</i> <i>lrill interco</i> <i>ress and c</i> <i>rent interco</i> . Two pal	gled holes 23 holes to further 27 he UPZ ar d-hole pai ween 10m and Coppe ength (21 one, and u oles in the doin the U to the Exp ce domain epts throu down dip a cepts bein	are dr oward 7 holes nd LCZ rs in th a and 2 er Expl of 29 i re orth nknow ese zor IPZ and blorati ns. ugh the to the rg more sed ho	illed k s 090 ^G s are d doma ne UPZ 0m ac oratio nterce nogona nterce nogona (n for nes, ho d LCZ (con Tal e Uppe interp e than les sho	betwee 2 , 3 hc rilled ins su ins su 2. A fu d furthough r Tar parts) a cal in the the sp poweve r cal respected respected reted bow sig	en -50 a oles are vertical pport g urther for ther sup get zon <i>get zon</i> <i>get zon</i> <i>arsely c</i> <i>r as the</i> <i>crively)</i> ones as <i>d Explo</i> <i>geomet</i> <i>le that</i> <i>unificant</i>	and -75 d drilled to ly (-80 to rade com our sets oport to g es is mos ntations to oblige drilled co y are of it is anti- those ob ration To those of those of those of those of those of those of the inte- t different	legrees owards (o -90 dep atinuity o (UPZ) ar grade stly >50r relative uely dov pper zor similar s cipated oserved j arget zo s zone. terprete aces bet	and 16 DOO ^O grees). Dver ad three <i>m,</i> to the <i>vn-dip</i> <i>ne.</i> <i>tyles of</i> <i>that</i> <i>for their</i> <i>ne are</i> <i>This</i> <i>d true</i> <i>ween</i>
	 than the It appea oriented area). T geometr relations 	oblique inte rs that the si. from close t here is no ge y of the zone ship between	rcepts (re x drill inte o orthogo ological o e, nor are grade an	fer "Verifi prcepts int onal (west or structur there any od drill hol	o the I ern ard al obse twin c e orier	Lower ea) up ervatio or cros ntatioi	mpling Gold to 45 ons to sed ho n in th	g and as Explora deg to a suppor ples to a	ssaying", Ition Tar Orthogor It the inte assess if i	above). g et zon nal (east erpreted	e are ern
	than the It appea oriented area). T geometr relations Hole location	oblique inte rs that the si. from close to here is no ge ry of the zone ship between n and grades	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the E	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration	o the I ern ard al obse twin o 'e orier Targe	Lower ea) up ervatio or cros ntation et hole	mpling Gold to 45 ons to sed ho n in th s:	g and as Explora deg to a suppor oles to a is zone.	ssaying", i tion Tar orthogon t the inte assess if t	above). g et zon nal (east erpreted there is i	e are ern
	 than the It appea oriented area). T geometr relations Hole location Tabulati 	oblique inte rs that the si. from close t here is no ge ry of the zone ship between n and grades on of drillhol	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the Ex e location Col	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration	o the I ern ard al obse twin c e orier Targe ion, to	Lower ea) up ervation or cros ntation et hole <u>tal de</u>	mpling Gold to 45 ons to sed ho n in th s: pth an tation	g and as Explora deg to a suppor oles to a is zone.	ssaying", ation Tar orthogor t the inte assess if i y sample	above). get zon aal (east erpreted there is details:	e are ern
	than the It appea oriented area). T geometr relations Hole location	oblique inters rs that the si. from close to here is no ge ry of the zone ship between n and grades on of drillhol Hole ID	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the Ex e location Coll Easting	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration o, orientat ar Location Northing	o the I ern ard al obso twin c e orier Targe ion, to RL	Lower ea) up ervation or cross ntation et hole tal de Orien Az.	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl.	g and as Explored deg to d support oles to d is zone. d assay Total Depth	ssaying", ation Tar orthogon t the inte assess if assess if sample Assay Number	above). get zon hal (east erpreted there is details: Details Metres	e are ern
	 than the It appea oriented area). T geometr relations Hole location Tabulati 	oblique inter rs that the si. from close to here is no ge ry of the zone ship between n and grades on of drillhol Hole ID BKZ33550-03	rcepts (re x drill inte o orthogo ological o c, nor are grade an for the Ex e location Coll Easting 769012.5	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration o, orientat ar Location Northing 9333548.4	o the I ern ard al obso twin c e orier Targe ion, to RL 275.9	Lower ea) up ervation or cros ntation et hole tal de Orien	mpling Gold to 45 ons to sed ho n in th s: pth an tation	g and as Explora deg to a suppor oles to a is zone. nd assay Total Depth 122.3	ssaying", ation Tar orthogon t the inte assess if ssess if ssess if ssess if ssess if ssess if ssess i	above). get zon bal (east erpreted there is details: Details 82.5	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters rs that the si. from close to here is no ge ry of the zone ship between n and grades on of drillhol Hole ID	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the Ex e location Coll Easting	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration o, orientat ar Location Northing	o the I ern ard al obso twin c e orier Targe ion, to RL	Lower ea) up ervation or cross ntation et hole tal de Orien Az. 90	mpling Gold to 45 ons to sed ho n in th s: pth ar tation Incl. -83	g and as Explored deg to d support oles to d is zone. d assay Total Depth	ssaying", ation Tar orthogon t the inte assess if assess if sample Assay Number	above). get zon hal (east erpreted there is details: Details Metres	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters rs that the si. from close to here is no ge y of the zone ship between and grades on of drillhol Hole ID BK233550-03 BK233500-03 BK233500-03 BK233500-04	rcepts (re x drill inte o orthogo ological o c, nor are grade an for the Ex e location Easting 769012.5 768944.4 769009.5 769009.1	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration o, orientat 9333548,4 9333548,4 9333515,3 9333515,3	o the l ern ard al obse twin c e orier Targe ion, to <u>RL</u> 275.9 273.6 285.8 285.8	Lower ea) up ervatio or cros ntation et hole tal de Orien Az. 90 4 270 270	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -60 -65 -50	g and as Explore deg to a support oles to a is zone. ad assay Total Depth 122.3 53.5 175.9 139.6	ssaying", ition Tar orthogon t the inter assess if a ssess if a Assay Number 80 30 68 77	above). get zon bal (east erpreted there is details: Details 82.5 82	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters rs that the si. from close to here is no ge y of the zone ship between and grades on of drillhol BK233550-03 BK233500-03 BK233500-04 BK233500-04 BK233500-04	rcepts (re x drill inte o orthogo ological o c, nor are grade an for the Ex e location <u>Coll Easting</u> 769012.5 768014.4 769009.5 769009.1 769009.3	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration o, orientat 9333548.4 9333548.4 9333515.3 9333515.4 9333515.4	o the I ern ard al obse twin c e orier Targe ion, to RL 273.6 285.8 285.8 306.4	Lower ea) up ervation or cros ntation et hole tal de Orien Az. 90 4 270 270 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -65 -50 -85	g and as Explore deg to a support oles to a is zone. ad assay Total Depth 122.3 53.5 175.9 139.6 349.5	ssaying", ition Tar orthogon t the inter assess if a ssess if a ssess if a	above). get zon bal (east erpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters rs that the si. from close to here is no ge y of the zone ship between and grades on of drillhol BK233550-03 BK233500-03 BK233500-04 BK233500-04 BK233500-05 BK233500-06	rcepts (re x drill inte o orthogo ological o c, nor are grade an for the Ex e location Coll Easting 769012.5 768914.4 769009.5 769009.1 769009.3 769009.3	fer "Verifi procepts int proal (west or structure there any od drill hol poloration porientat proteing 9933548.4	o the l ern ard al obso twin c e orier Targe ion, to 273.6 285.8 306.4 305.7	Lower ea) up ervation ntation et hole tal de Orien Az. 90 4 270 30 270	mpling Gold to 45 ons to sed ho n in th s: pth an Incl. -83 -60 -65 -50 -85 -85	g and as Explore deg to a support oles to a is zone. ad assay Total Depth 122.3 53.5 175.9 139.6 349.5 359.0	ssaying", ition Tar orthogon t the inter assess if a Assay Number 80 30 68 77 207 184	above). get zon hal (east erpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters oblique inters that the si. I from close to there is no geto for the zone ship between the sh	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the Ex e location <u>Coll Easting</u> 769012.5 768944.4 769009.5 769009.1 769009.5 769008.5 769000.5	fer "Verifi prcepts int pral (west or structur there any od drill hol poloration porientat 9933548.4 9933548.4 9933515.3 9933515.4 9933505.6 9933505.7 9933505.7	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 306.4 305.7 275.5	Lower ea) up ervation ntation et hole tal de Orien Az. 90 4 270 90 270 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -65 -50 -85 -85 -55	g and as Explored deg to d support oles to d is zone. d assay Total Depth 122.3 53.5 175.9 139.6 349.5 359.0 208.5	ssaying", ition Tar orthogon t the inter assess if a ssess if ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess sses ssess ssess sses ssess ssess ssess sses	above). get zon bal (east erpretea there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6 112.4	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol BK233550-03 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233550-05 BK233550-05 BK233550-07	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the Ex e location <u>Coll Easting</u> 769012.5 768944.4 769003.5 769003.5 769003.5 769003.5 769005.3	fer "Verifi prcepts int onal (west or structur there any od drill hol porientat ar Location o, orientat ar Location 9333548.4 9333744.9 9333515.4 9333505.6 9333505.6 9333505.6 9333545.6	o the I ern ard al obso twin c e orier Targe ion, to RL 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3	Lower ea) up ervation or cross ntation et hole tal de Orien Az. 90 4 270 270 90 270 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -60 -65 -55 -85 -85 -80	g and as Explora deg to a support oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if it v sample Assay Number 80 30 68 77 207 184 111 309	above). aget zone bal (east erpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters that the sill from close to form close to f	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the E e location Coll Easting 769012.5 76803.4.4 769003.5 76903.9 76903.5 76900.5 769105.3 769105.3 768382.7	fer "Verifi ercepts int onal (west or structur there any od drill hol exploration o, orientat ar Location 933548.4 9333548.4 9333515.3 933515.3 933515.4 9333505.7 9333545.6 9333545.6 9333545.6	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3 272.8	Lower ea) up ervation ntation et hole tal de Orien Az. 90 4 270 90 270 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -65 -50 -85 -85 -55	g and as Explore deg to a suppor oles to a is zone.	ssaying", ition Tar orthogon t the inter assess if a ssess if ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess ssess sses ssess ssess sses ssess ssess ssess sses	above). get zon bal (east erpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9 107.2	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol BK233550-03 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233550-05 BK233550-05 BK233550-07	rcepts (re x drill inte o orthogo ological o e, nor are grade an for the Ex e location <u>Coll Easting</u> 769012.5 768944.4 769003.5 769003.5 769003.5 769003.5 769005.3	fer "Verifi prcepts int onal (west or structur there any od drill hol porientat ar Location o, orientat ar Location 9333548.4 9333744.9 9333515.4 9333505.6 9333505.6 9333505.6 9333545.6	o the I ern ard al obso twin c e orier Targe ion, to RL 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3	Lower ea) up ervation or cross ntation et hole tal de Orien Az. 90 4 270 270 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -60 -65 -50 -85 -85 -85 -80 -65	g and as Explora deg to a support oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if it ssess if it	above). aget zone bal (east erpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol BK233550-03 BK233500-03 BK233500-03 BK233500-04 BK233500-05 BK233500-05 BK233500-07 BK233600-10 BK233600-11 BK233600-12	rcepts (re x drill inte o orthogo ological o c, nor are grade and for the Ex e location Coll Easting 769012.5 769093.1 769093.9 769009.5 769000000000000000000000000000000000000	fer "Verifi prcepts int pral (west or structur there any d drill hol ploration porientat ar Location porientat ar Location p333548.4 9933515.3 9933515.3 9933515.4 9933515.4 9933505.6 9933505.7 9933548.4 9933505.7 9933548.4 9933548.4 9933599.2 9933599.3 9933509.3 9933603.9	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3 272.5 324.3 272.8 273.4 337.5 337.3	Lower ea) up ervation or cross ntation et hole tal de Orien Az. 90 4 270 270 90 270 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -60 -65 -50 -85 -85 -85 -80 -65 -50	g and as Explore deg to a support oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if it ssess if it	above). get zon bal (east erpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 77.4 208.8 112.4 310.9 107.2 105.4	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era	oblique inters rs that the sil from close to here is no ge y of the zone ship between n and grades on of drillhol Hole ID BKZ33550-03 BKZ33500-03 BKZ33500-03 BKZ33500-05 BKZ33500-05 BKZ33500-05 BKZ33500-05 BKZ33500-07 BKZ33600-10 BKZ33600-11 BKZ33600-12 BKZ33600-13	rcepts (re x drill inte o orthogo ological o c, nor are grade and for the Ex e location Coll Easting 769012.5 768009.5 769009.1 769009.5 769009.5 769009.1 769009.5 769009.5 769009.5 769009.5 769009.5 769009.5 769009.5 769009.5 769009.5 769009.5 769009.5 769009.5 769102.5 769105.3	fer "Verifi prcepts int pral (west or structur there any d drill hol ploration porientat ar Location porientat ar Location p333548.4 9933515.3 9933515.4 9933515.4 9933515.4 9933505.6 9933505.7 9933505.7 9933505.2 9933509.2 9933509.2 9933509.2 9933604.2 9933604.1	o the I ern ard al obso twin c e orier Targe ion, to RL 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3 272.5 324.3 272.5 327.3 337.5 337.3	Lower ea) up ervation or cross ntation et hole tal de Drien Az. 90 4 270 270 90 270 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth ar tation Incl. -83 -60 -65 -50 -85 -85 -85 -55 -80 -85 -80 -70	g and as Explore deg to a support oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if a ssess if a ssess if a ssess if a assess if a assessess if a assess if a assess if	above). get zon bal (east erpreted there is details: Details Betails Betails Betails Betails 105 112.4 112.4 105.4 119.2 246.4	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the sill from close to here is no ge y of the zone ship between n and grades on of drillhol Hole ID BK233550-03 BK233500-03 BK233500-03 BK233500-03 BK233500-03 BK233500-07 BK233500-08 BK233500-07 BK233500-07 BK233500-08 BK233500-01 BK233500-03 BK233500-03 BK233500-04 BK233500-05 BK233500-06 BK233500-07 BK233600-10 BK233600-11 BK233600-12 BK233600-13 BK233600-13 BK233600-14	rcepts (re x drill inte o orthogo ological o c, nor are grade and for the Ex e location Coll Easting 769012.5 768003.5 769003.1 769093.9 769093.5 769003.5 769003.5 769003.5 769003.5 769003.5 769005.3 768383.6 769105.3 768383.6 769122.6 769122.5 3 768383.7	fer "Verifi procepts int procepts int provident (west or structure there any od drill hole ploration porientat ar Location porientat as States 933515.3 933515.4 933515.4 933515.4 933515.4 933555.6 933505.6 933505.6 933505.7 933545.6 933559.3 933505.7 933559.3 933503.9 933503.9 933604.2 9333604.2	o the I ern ard al obso twin c e orier Targe ion, to RL 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3 275.5 324.3 275.5 324.3 273.4 337.5 337.3 337.9 287.6	Lower ea) up ervation or cross ntation et hole tal de Orien Az. 90 4 270 270 90 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth ar tation Incl. -83 -60 -65 -50 -85 -85 -80 -65 -50 -85 -80 -70 -75	g and as Explore deg to a support oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if a ssess if a Assay Number 80 30 68 77 207 184 111 309 104 105 183 190 225 32	above). get zon nal (east erpreted there is details: Details 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9 107.2 105.4 187.5 199.2 246.4 94.9	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the sill from close to here is no ge y of the zone ship between n and grades on of drillhol Hole ID BK233550-03 BK233550-03 BK233500-03 BK233500-04 BK233500-05 BK233500-06 BK233500-07 BK233500-07 BK233500-07 BK233500-01 BK233500-01 BK233500-02 BK233500-03 BK233500-04 BK233500-05 BK233500-06 BK233500-07 BK233600-11 BK233600-12 BK233600-13	rcepts (re x drill inte o orthogo ological o e, nor are grade and for the Ex e location Easting 769012.5 768903.1 769093.9 769093.9 769093.5 769003.1 769093.9 769093.5 769005.3 769005.3 768982.7 768983.6 769122.6 769122.6 769122.3 768983.4	fer "Verifi procepts int procepts int provident (west provident of the provident of the pro	o the l ern ard al obse twin c e orier Targe ion, to 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3 272.8 273.4 337.5 337.3 337.9 287.6 289.4	Lower ea) up ervation for cross ntation et hole tal de Urien Az. 90 4 270 270 90 270 90 90 90 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation tation 1ncl. -83 -60 -65 -50 -85 -85 -80 -65 -55 -80 -70 -75 -53	g and as Explore deg to a support oles to a is zone.	ssaying", ition Tar orthogon t the inter orssess if a ssess if a Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Number Assay Assay Number Assay Assay Number Assay Assay Number Assay Assay Number Assay Assay Number Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay Assay	above). get zon nal (east erpreted there is details: Details 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9 107.4 208.8 184.6 112.4 310.9 107.4 208.8 184.6 112.4 310.9 107.4 246.4 187.5 199.2 246.4 94.9 100.4	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol BK233550-03 BK233500-03 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-07 BK233600-11 BK233600-12 BK233600-13 BK233650-08 BK233650-09 BK233650-09 BK233650-09 BK233650-09 BK233650-11	rcepts (re x drill inte o orthogo ological o c, nor are grade an for the Ex e location Easting 769012.5 768044.4 769009.5 769009.1 769093.9 769093.9 769093.5 769009.1 769093.9 769093.5 769005.3 768983.6 769102.2 769122.6 769122.5 3 768983.6 769122.5 3 768983.4 768983.4 768981.4 768094.3	fer "Verifi rcepts int onal (west or structur there any od drill hol porientat or structur porientat or crientat or crientat o	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 306.4 305.7 275.5 324.3 305.7 275.5 324.3 272.8 273.4 337.5 337.3 337.9 287.6 289.4 334.6	Lower ea) up ervation for cross ntation et hole tal de Orien Az. 90 4 270 90 90 90 90 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -65 -50 -85 -85 -80 -65 -50 -85 -80 -65 -50 -85 -80 -65 -50 -85 -80 -65 -50 -85 -80 -65 -50 -85 -80 -65 -50 -85 -80 -65 -50 -85 -85 -80 -65 -50 -85 -85 -85 -80 -65 -85 -85 -85 -85 -85 -85 -85 -8	g and as Explore deg to a support oles to a is zone. ad assay Total Depth 122.3 53.5 175.9 139.6 349.5 359.0 208.5 435.5 201.0 216.0 350.0 365.0 450.5 142.2 274.5 364.0	ssaying", ition Tar orthogon t the inter assess if a ssess if a ssess if a	above). get zon nal (east erpreted there is details: Details 0 0 0 0 0 0 0 0 0 0 0 0 0	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol BK233550-03 BK233500-03 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-05 BK233500-07 BK233600-11 BK233600-12 BK233600-13 BK233650-08 BK233650-09 BK233650-09 BK233650-09 BK233650-12	rcepts (re x drill inte o orthogo ological o e, nor are grade and for the Ex e location <u>Coll</u> Easting 769012.5 768903.5 769003.5 769003.5 769003.5 769105.3 768983.6 769122.6 769122.2 769125.3 768383.6 769122.3 768383.6 769122.3 768383.4 768381.4 769034.3 768034.3 769030.5	fer "Verifi prcepts int onal (west or structure there any od drill hole portentation porientati porientation porientation porientation	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 306.4 305.7 275.5 324.3 305.7 275.5 324.3 305.7 275.5 324.3 307.3 337.3 337.3 337.3 337.3 337.3 337.3 337.3 337.3 337.3	Lower ea) up ervation for cross ntation et hole tal de Orien Az. 90 4 270 90 90 90 90 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation tation -83 -60 -65 -85 -85 -85 -85 -85 -80 -85 -80 -85 -80 -75 -83 -85 -80	g and as Explora deg to a suppor oles to a is zone. ad assay Total Depth 122.3 53.5 175.9 139.6 349.5 359.0 208.5 435.5 201.0 216.0 350.0 365.0 435.5 142.2 274.5 364.0 350.0	ssaying", ition Tar orthogor t the inter assess if i ssess i ssess if i ssess i ssess if i ssess i	above). aget zone bal (east erpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9 107.2 105.4 187.5 199.2 246.4 187.5 199.2 246.4 184.8 200.9	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol BK233550-03 BK233500-05 BK233500-04 BK233500-05 BK233500-06 BK233500-06 BK233500-06 BK233500-07 BK233600-11 BK233600-13 BK233600-13 BK233650-08 BK233650-08 BK233650-09 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-13	rcepts (re x drill inter o orthogo ological o c, nor are grade and for the Ex e location Easting 769012.5 768944.4 769003.5 769003.1 769093.9 769093.5 769005.3 768982.7 768983.6 769122.6 769122.6 769122.6 769122.6 769122.6 769122.6 769122.3 768983.4 768981.4 768981.4 769094.3 768981.4 769094.3 768981.4	fer "Verifi procepts int procepts int procepts int procepts int procession there any d drill hole procession p	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 285.8 285.8 306.4 305.7 275.5 324.3 272.8 273.4 337.5 337.3 337.9 287.6 289.4 334.6 334.9 289.4 334.6 334.9	Lower ea) up ervation for cross ntation et hole tal de Orien Az. 90 4 270 90 270 90 90 90 90 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -60 -65 -50 -85 -85 -80 -65 -50 -85 -80 -70 -75 -85 -80 -70 -75 -85 -80 -85 -80 -70 -75 -85 -80 -80 -80 -80 -80 -80 -80 -80	g and as Explore deg to a support oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if i ssess i ssess if i ssess i ssess if i ssess	above). get zon al (east crpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9 107.2 105.4 187.5 199.2 246.4 94.9 100.4 184.8 200.9 149.4	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol Hole ID BK233550-03 BK233500-04 BK233500-05 BK233500-05 BK233500-06 BK233500-05 BK233500-05 BK233500-07 BK233600-10 BK233600-11 BK233600-11 BK233650-08 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233700-07 BK233700-08	rcepts (re x drill inter o orthogo ological o e, nor are grade and for the E e location Coll Easting 769012.5 76803.1 76903.9 76903.9 76903.5 76903.3 76903.5 76900.5 769105.3 768983.6 769122.6 769122.6 769122.6 769122.3 768983.6 769122.3 768983.6 769122.3 768983.4 769393.3 768983.2 768981.3	fer "Verifi prcepts int pral (west or structur there any od drill hol porientat provintion porientat provintion provintio	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 285.8 306.4 305.7 275.5 324.3 305.7 275.5 324.3 305.7 275.5 324.3 272.8 273.4 337.5 337.3 337.9 287.6 283.4 334.6 334.9 284.9 285.3	Lower ea) up ervation or cross ntation et hole tal de Orien Az. 90 4 270 270 90 270 90 90 90 90 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -60 -65 -50 -85 -55 -80 -65 -50 -85 -80 -70 -75 -85 -80 -70 -75 -85 -80 -85 -80 -70 -75 -85 -80 -85 -80 -85 -80 -85 -80 -70 -75 -85 -80 -85 -80 -70 -75 -85 -80 -80 -80 -80 -80 -80 -80 -80	g and as Explore deg to a suppor oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if it sample Assay Number 80 30 68 77 207 184 111 309 104 105 183 190 225 92 97 177 195 148 163	above). get zone bal (east erpreted there is betails: betail	e are ern
	than the It appea oriented area). T geometr relations Hole location Tabulati Era 2017-18	oblique inters rs that the si. from close to here is no ge y of the zone ship between n and grades on of drillhol BK233550-03 BK233500-05 BK233500-04 BK233500-05 BK233500-06 BK233500-06 BK233500-06 BK233500-07 BK233600-11 BK233600-13 BK233600-13 BK233650-08 BK233650-08 BK233650-09 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-12 BK233650-13	rcepts (re x drill inter o orthogo ological o c, nor are grade and for the Ex e location Easting 769012.5 768944.4 769003.5 769003.1 769093.9 769093.5 769005.3 768982.7 768983.6 769122.6 769122.6 769122.6 769122.6 769122.6 769122.6 769122.6 769122.6 769125.3 768983.4 768983.4 768981.4 768981.4 768981.4 768981.4 768981.4 768981.4 768981.4	fer "Verifi procepts int procepts int procepts int procepts int procession there any d drill hole procession p	o the l ern ard al obso twin c e orier Targe ion, to 275.9 273.6 285.8 285.8 285.8 306.4 305.7 275.5 324.3 272.8 273.4 337.5 337.3 337.9 287.6 289.4 334.6 334.9 289.4 334.6 334.9	Lower ea) up ervation for cross ntation et hole tal de Orien Az. 90 4 270 90 270 90 90 90 90 90 90 90 90 90 90 90 90 90	mpling Gold to 45 ons to sed ho n in th s: pth an tation Incl. -83 -60 -65 -50 -85 -85 -80 -65 -50 -85 -80 -70 -75 -85 -80 -70 -75 -85 -80 -85 -80 -70 -75 -85 -80 -80 -80 -80 -80 -80 -80 -80	g and as Explore deg to a support oles to a is zone.	ssaying", ition Tar orthogor t the inter assess if i ssess i ssess if i ssess i ssess if i ssess	above). get zon al (east crpreted there is details: Details Metres 82.5 30.5 68.8 77.4 208.8 184.6 112.4 310.9 107.2 105.4 187.5 199.2 246.4 94.9 100.4 184.8 200.9 149.4	e are ern

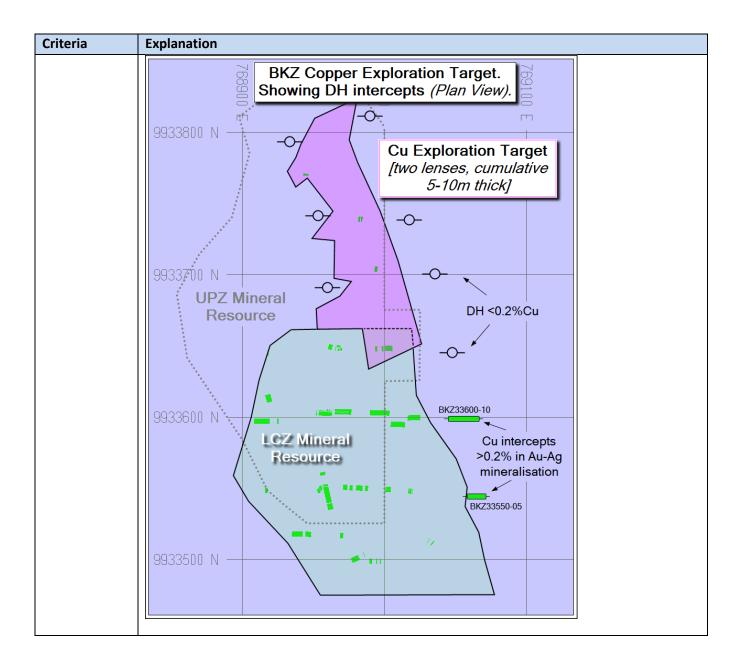
	olanation	l															
	0	Lower	Gold-	Silver E	xpl	oratio	on Zo	one:				-		-		-	
			lowe	er cut o	ff ≥	0.2%	6 Au	graa	le								
				rnal dil				-		rnoro	ited i	fnece	essarv	to en	abl	le	
				tional		-				•							vllv
				orted		•					uucu		icreep	. 0111	, ij .	sputh	лпу
			supp	onteu	Uy I	ieurb	y no	ies									
	nmary ta		-	-	-						-				Targ	get Zo	ones
•		Section		efining From			C-LeC	IC Explor	-			2t ZON	Au (ppm)		nm)	Cu (%)	Fe (>
	zone	Jection	lible			,	ervar		itial Grad		5(7.)	().)	на (ррш)		P,	Cu (7.)	Te (/
			BKZ3350	58.9 0-03 59.9		9.5 0.5	1.0 1.0		ade PbZn rade PbZr		0.32	2.08 6.57	0.11 0.11		5.1 21.6	0.03	10. 9.
			DRESSO	60.5	5 6	61.5	1.0	Low Gra	ade PbZn		0.18	1.09	0.12		4.9	0.03	12
		33500	BKZ3350	0-04 52.0		2.0 3.0	1.4 1.0		ade PbZn rade PbZr		0.61 1.59	1.23 2.87	0.02		9.1 46.0	0.02	65
			BKZ3350	0-06 117.0		9.0 4.0	2.0 5.0		rade PbZr ade PbZn		4.67 0.34	10.34 1.14	0.38 0.06		77.0 12.0	0.19 0.01	7
			BKZ3355	47 () 4	9.0	2.0	Low Gra	ade PbZn rade PbZr		0.29	2.10 5.44	0.11		71.2	0.12 0.14	8
		33550	BKZ3355	0-05 100.5	5 11	4.0	13.5	High Gr	rade PbZr)	8.36	15.05	0.36	16	67.0	0.48	17
	Eastern		BKZ3360	114.0) 5	7.0 3.0	3.0 3.0		ade PbZn ade PbZn		2.09	0.41 2.43	2.42	7	74.7 78.3	0.37	39
	Extension to UPZ	33600	BKZ3360 BKZ3360	53.0) 5	6.0 3.5	3.0 1.0		rade PbZr rade PbZr		7.42	23.07 0.71	0.26		46.0 37.0	0.98	1
			BKZ3360	173 () 17	6.5	3.5	High Gr	rade PbZr		4.31	8.94 0.05	0.43	14	46.1 13.3	1.19	7
		—	BKZ3365	0-09 110.0) 11	9.0	9.0	High Gr	ade PbZn rade PbZr	1	1.98	2.86	0.25	6	61.7	0.09	7
		33650	BKZ3365	0-12 155.0		0.0 3.0	5.0 3.0		ade PbZn rade PbZr		1.06 6.91	0.58 0.06	0.34 0.28		96.0 58.7	0.04	1 - 07
		33700	BKZ3370	117 9	5 12	0.5 6.5	3.0 6.0	Low Gra	ade PbZn rade PbZr		0.70 3.82	1.86 4.58	0.06	3	33.3 37.2	0.09 1.08	2
		00750	DI/20075	95.0) 10	0.0	5.0	Low Gra	ade PbZn		0.25	0.56	0.02	:	31.5	0.06	
		33750	BKZ3375	0-08 100.0		3.0 9.0	3.0 6.0		rade PbZr ade PbZn		1.93 0.56	6.96 0.95	0.08 0.07		70.4	0.16 0.06	6
	Drillhole		Section 33650	Hole BKZ3365		From 73.5	T e) Int		Cu (%) 0.69	РЬ (%) Zn (Ag (ppm) 7.50	Fe (% 12
	Nth Exten:		33700	BKZ3370		84.8						~ ~ ~				47.64	12
	and catello			BK73375	0-05 1		9: 53.	8	13.2	1.09	2.3	6 3	3.14).13	0.40			
			33750	BKZ3375 BKZ3375		51 84	53.9 91.3	B 5 3	13.2 2.5 7.3	1.37 1.91	0.1 1.3	6 3 0 0 2 ·). 13 1. 17	0.40		17.90 45.26	8
			33750		0-07	51	53.5	B 5 3	13.2 2.5	1.37	0.1	6 3 0 0 2 ·).13	0.07		17.90	8 14
•	Drillhole	e inter		BKZ3375 BKZ3375	0-07 0-07	51 84 95.75	53.9 91.3 103	8 5 3 2	13.2 2.5 7.3 6.25	1.37 1.91 2.86	0.1 1.3 0.7	6 3 0 0 2 3 4 0).13 1.17 1.86	0.07 0.40 0.27		17.90 45.26	8 14
Þ		e intere EP zone	cepts d	BKZ3375 BKZ3375 efining	0-07 0-07 1 the	51 84 95.75 e Gol	53.: 91.: 10: d-Sil	B 5 3 2 ver E	13.2 2.5 7.3 6.25 ЕхрІо То	1.37 1.91 2.86 ration	0.1 1.3 0.7 Targ	6 3 0 0 2 2 4 0 9et zo	0.13 1.17 1.86 0 <i>ne</i> at 1 m) Ag	0.07 0.40 0.27 BKZ.	Cu	17.90 45.26 101.08	8 14 13 РЬ (
•			cepts d	BKZ3375 BKZ3375 BKZ3375	0-07 0-07 1 the 1e Z335	51 84 95.75 e Gol	53. 91. 10: d-Sil Fro 162	8 5 3 2 ver E 2.5	13.2 2.5 7.3 6.25 Explo 168.5	1.37 1.91 2.86 ration	0.1 1.3 0.7 Targ	6 3 0 0 2 7 4 0 9 <i>et zo</i> Au (pp)	0.13 1.17 1.86 0 <i>ne</i> at 1 m) Ag	0.07 0.40 0.27 BKZ. (ppm) 47.6	Cu	17.90 45.26 101.08	8 14 13 Pb 1 (
•			cepts d	BKZ3375 BKZ3375 ion Ho D BK D BK	0-07 0-07 1e 2335 2335 2335	51 84 95.75 e Gol 00-05 00-06 50-05	53. 91. 10: d-Sil 162 1	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13.2 2.5 7.3 6.25 Explo 168.5 143 172	1.37 1.91 2.86 ration	0.1 1.3 0.7 <i>Targ</i> val 4 6.0 5.0 5.0	6 3 0 0 2 0 4 0 9 9 9 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	0.13 1.17 .86 0 <i>ne at</i> . m) Ag 33 .12	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8		17.90 45.26 101.08 0.02 0.01 0.13	8 14 13 РЫ (С С С
•			cepts d Sect	BKZ3375 BKZ3375 ion Ho BK BK BK BK	0-07 0-07 1 the 2335 2335 2335 2335	51 84 95.75 00-05 00-06 50-05 00-10	53.9 91.3 103 d-Sil 162 162 162	8 5 5 3 2 2 wer E 3 m 2 2 3 3 2 3 2	13.2 2.5 7.3 6.25 Explo 168.5 143 172 181.9	1.37 1.91 2.86 ration	0.1 1.3 0.7 Targ val 6.0 5.0 5.0 8.4	6 3 0 0 2 0 4 0 9 9 9 9 7 4 0 0 0. 0. 0. 4. 0. 2.	0.13 1.17 .86 000 01 .86 000 01 .86 000 01 .85 .85 .85 .85 .85 .85 .85 .85	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6		17.90 45.26 101.08 0.02 0.01 0.13 0.24	8 14 13 Pb (((((
•	Au-Ag		cepts d Sect 3350 3355	BKZ3375 BKZ3375 Iefining ion Ho BK D BK D BK	0-07 0-07 1 1 2 3 3 3 5 2 3 3 5 2 3 3 5 2 3 3 6 2 3 3 6 2 3 3 6 2 3 3 6	51 84 95.75 00-05 00-06 50-05 00-10 00-12	53.9 91.3 103 d-Sil 162 162 162 183 833 185	8 5 5 3 2 2 wer E 3 m 2 2 3 3 2 3 2	13.2 2.5 7.3 6.25 Explo 168.5 143 172	1.37 1.91 2.86 Inter 5 9	0.1 1.3 0.7 <i>Targ</i> val 4 6.0 5.0 5.0	6 3 0 0 0 2 7 4 0 7 4 0 7 4 0 7 4 0 7 4 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.13 1.17 .86 0 <i>ne at</i> . m) Ag 33 .12	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8		17.90 45.26 101.08 0.02 0.01 0.13	8 14 13 Pb (((((((((((((((((((
•	Au-Ag	EP zone	cepts d Sect 3350 3355	BKZ3375 BKZ3375 BKZ3375 Iefining ion Ho BK BK BK BK BK BK	0-07 0-07 1e 2335 2335 2335 2336 2336 2336 2336	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09	d-Sil 102 d-Sil 162 162 183 185 145	B S 5 3 2 2 0 0 2 2	13.2 2.5 7.3 6.25 Explo 168.5 143 172 181.9 207 131.5 199.6	1.37 1.91 2.86 Inter 5 5 9 2 1 1 5	0.1 1.3 0.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 3 0 0 2 7 4 0 7 4 0 7 4 0 7 4 0 7 4 0. 0. 0. 0. 0. 1. 1. 0. 3.	0.13 1.17 .86 000 01 000 00 000 000 000 000 00000 000 000 000 000 000 000 000 000 0000 0000 0000 000 000 0000 000 000 0000 000 000 0000	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4		17.90 45.26 101.08 101.08 0.02 0.01 0.13 0.24 0.02 0.04 0.06	8 14 13 Pb (((((((((((((((((((
•	Au-Ag	EP zone	Septs a 33500 33550 33600 33650	BKZ3375 BKZ3375 BKZ3375 BKZ3375 BK D BK D BK D BK D BK D BK D BK BK D BK	0-07 0-07 1e 2335 2335 2335 2336 2336 2336 2336	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09 50-09 50-12	53.9 91.1 10. Fro 162 162 185 185 145	8 5 33 2 2 2 9 2 9 2 9 2 9 3 117 3 3.5 5 5.8 119 3.5 5 5.6 2	13.2 2.5 7.3 6.25 Explo 168.5 143 172 181.9 207 131.5 199.6 197	1.37 1.91 2.86 nation Inter	0.1 1.3 0.7 Targ val 6.0 5.0 5.0 8.4 2.5 50.1 31.4	6 3 0 0 2 7 4 0 7 4 0 7 4 0 7 4 0 7 4 0 0. 0. 0. 0. 0. 1. 1. 0. 3. 2.	0.13 1.17 1.86 0.00	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5		17.90 45.26 101.08 0.02 0.01 0.02 0.01 0.02 0.04 0.06 0.04	8 14 13 ((((((((((((((((((
•	Au-Ag	EP zone	Sect 3350 3355 3360	BKZ3375 BKZ3375 Iefining ion Ho BK BK BK BK BK BK BK BK BK BK	0-07 0-07 1 the Z335 Z335 Z335 Z335 Z336 Z336 Z336 Z336	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09	d-Sil 102 d-Sil 162 162 183 185 145	8 5 3 2 2 2 2 3 2 3 2 3 3 2 3 2 3 3 2 3 3 3	13.2 2.5 7.3 6.25 Explo 168.5 143 172 181.9 207 131.5 199.6	137 191 2.86 ration Inter 5 5 9 2 2 5 5 9 2 2 5 5 8 8 2 2 1 1 1 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.1 1.3 0.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 3 0 0 0 2 4 0 4 0 7 4 0 7 4 0 7 4 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.13 1.17 .86 000 01 000 00 000 000 000 000 00000 000 000 000 000 000 000 000 000 0000 0000 0000 000 000 0000 000 000 0000 000 000 0000	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4		17.90 45.26 101.08 101.08 0.02 0.01 0.13 0.24 0.02 0.04 0.06	8 14 13 ((((((((((((((((((
•	Au-Ag	EP zone	Sects of 3350 3355 3360 3365 3360 3370 3375	BKZ3375 BKZ3375 Idefining ion Ha BK BK BK BK BK BK BK BK BK BK BK BK BK	0-07 0-07 1 the Z335 Z335 Z335 Z335 Z335 Z335 Z335 Z33	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09 50-12 00-08 00-03 50-08	53.3 91.1 102 6-Sil 162 162 185 185 126 220	8 5 5 3 2 2 0 2 0 2 0 2 0 3 2 3 0 5 38 117 38.5 5 56.8 119 30.5 5 50.5 7 1115 1115	13.2 2.5 7.3 6.25 7.3 6.25 168.5 143 172 181.9 207 131.5 199.6 199.7 214 285.75 200.4	137 1.91 2.86 Inter 55 55 2 2 2 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1 1.3 0.7 Targ val 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6 3 0 0 0 2 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 2 1 0 0 0 0	2.13 1.17 .86 000 e at m) Ag 70 33 .12 45 05 57 53 63 70 57 53 63 70	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 55.7		17.90 45.26 101.08 0.02 0.01 0.13 0.24 0.02 0.04 0.04 0.04 0.04 0.03 0.02	8 14 13 ((((((((((((((((((
	Au-Ag	EP zone	Sects of 3350 3355 3360 3365 3360 3370	BKZ3375 BKZ3375 BKZ3375 Ion Ha BK BK BK BK BK BK BK BK BK BK BK BK BK	0-07 0-07 1 the Z335 Z335 Z335 Z336 Z336 Z336 Z336 Z336	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09 50-12 00-08 00-09 50-08 50-07	d-Sil/ Fro 162 162 162 162 162 162 162 126 220 2	8 5 5 3 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3 3 3 5 5 8 117 3 3 5 5 6 5 5 115 5 5 5	13.2 2.5 7.3 6.25 143 168.5 143 172 181.9 207 131.5 199.6 199.6 199.6 214 285.75 200.4 294.5	137 1.91 2.86 Inter 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1 1.3 0.7 Targ val 6.0 5.0 5.0 5.0 8.4 2.5 5.1 31.4 7.5 5.3 5.3 5.4 5.5	6 3 0 0 2 7 4 0 7 7 4 0 4 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0	D.13 Image: Constraint of the second se	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 57.7 80.2		17.90 45.26 101.08 0.02 0.01 0.02 0.04 0.04 0.04 0.04 0.03 0.02 0.04	8 14 13 ((((((((((((((((((
•	Au-Ag UpperG	EP zono	Sects of 33500 33550 33600 33650 33650 33650 33700 33750	BKZ3375 BKZ3375 BKZ3375 BKZ3375 BK D BK D BK D BK D BK D BK D BK D BK D	0-07 0-07 1 the Z335 Z335 Z335 Z335 Z336 Z336 Z336 Z336	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09 50-12 00-08 00-03 50-08	53:1 91.1 10: Fra 162 162 185 185 185 126 220 22 22 22 278 262.	8 5 5 3 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 117 3 3.8 1 119 3 3.5 5 5.6 5 5.5 5 5.5 5 5.5 5 3.4 1	13.2 2.5 7.3 6.25 168.5 168.5 143 172 181.9 207 131.5 199.6 197 214 285.75 200.5 320.5 320.5 319.75	137 191 2.86 Inter 5 9 2 2 1 1 5 9 2 2 1 1 5 9 2 2 1 1 5 9 9 2 2 1 1 1 9 9 2 2 1 1 9 9 2 2 1 1 1 9 1 1 1 1	0.1 1.3 0.7 Targ val 4 6.0 5.0 5.0 8.4 1.2 2.5 5.3 5.3 5.3 5.4 5.5 12.1 7.6	6 3 0 0 0 2 4 0 4 0 7 4 0 7 4 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.13 0.117 0.13 0.117 0.13 <	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 55.7		17.90 45.26 101.08 0.02 0.01 0.13 0.24 0.02 0.04 0.04 0.04 0.04 0.03 0.02	8 14 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	Au-Ag UpperG	EP zone	Sects of 3350 3355 3360 3365 3365 3365 3370 3375 3375	BK23375 BK23375 BK23375 BK23375 BK D BK D BK D BK D BK D BK D BK D BK D	0-07 0-07 1 the 2335 2335 2335 2335 2335 2335 2336 2336	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09 50-12 00-08 00-09 50-08 50-07 00-11 00-12 00-13	53:1 91.1 10: Fra 162 162 185 1855 126 2200 2278 2278 262. 351	8 5 5 3 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 117 3 3.5 5 5.6 5 5.5 5 5.5 5 5.5 5 3.4 15 7.6 15	13.2 2.5 7.3 6.25 168.5 168.5 143 172 181.9 207 131.5 199.6 197 214 285.05 204.5 320.5 320.5 319.75 378.5	137 191 2.86 ration Inter 55 99 22 1 1 55 88 66 88 66 88 66 88 66 88 66 88 66 88 66 88 88	0.1 1.3 0.7 Targ val 4 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6 3 0 0 0 2 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13 1.17 1.17 1.18 0.16 Ag 0.17 Ag 0.18 12 0.19 53 05 53 05 53 05 57 09 53 57 57 53 68 70 57 57 57 53 68 47 29	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 57.7 80.2 60.9 16.1 4.8		17.90 45.26 101.08 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.04 0.02 0.	8 14. 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	Au-Ag UpperG	EP zono	Sects of 3350 3355 3360 3365 3365 3365 3370 3375 3375	BKZ3375 BKZ3375 BKZ3375 BKZ3375 BK BK BK BK BK BK BK BK BK BK BK BK BK	0-07 0-07 1 the 2335 2335 2335 2336 2336 2336 2336 2337 2337 2337 2337	51 84 95.75 e Gol 00-05 50-05 00-10 00-12 50-09 50-03 50-03 50-03 50-03 50-07 00-11 00-12 00-13 50-01	53:1 91.1 10: Fra 162 162 162 185 185 126 220 22 2277 262 357 262	8 5 5 3 2	13.2 2.5 7.3 6.25 168.5 168.5 143 172 181.9 207 131.5 199.6 197 214 285.75 200.5 320.5 320.5 320.5 378.5 324.5	137 191 2.86 ration Inter 5 99 22 1 1 5 99 22 1 1 5 99 22 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 99 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1 1.3 0.7 Val 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 3 0 0 0 2 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0	0.13 1.17 1.17 1.18 0.16 Ag 0.17 Ag 0.18 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.11 13 0.11 13 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 0.11 14	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 57.7 80.2 60.9 16.1 4.8 26.7		17.90 45.26 101.08 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.02 0.02 0.01 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.	Е 141 1 (((((((((((((((((
•	Au-Ag UpperG	EP zono	Sects of 3350 3355 3360 3360 3370 3370 3375 3360 3375 3360 3370 3375 3360	BKZ3375 BKZ3375 BKZ3375 BKZ3375 BK BK BK BK BK BK BK BK BK BK BK BK BK	0-07 0-07 1 the 2335 2335 2335 2336 2336 2336 2336 2337 2337 2337 2337	51 84 95.75 00-05 00-06 50-05 00-10 00-12 50-09 50-12 00-08 00-09 50-08 50-07 00-11 00-12 00-13	53:1 91.1 10: Fra 162 162 185 1855 126 2200 2278 2278 262. 351	8 5 5 3 2	13.2 2.5 7.3 6.25 168.5 168.5 143 172 181.9 207 131.5 199.6 197 214 285.05 204.5 320.5 320.5 319.75 378.5	137 191 2.86 ration Inter 5 99 22 1 1 5 99 22 1 1 5 99 22 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 99 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1 1.3 0.7 Targ val 4 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6 3 0 0 0 2 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0	0.13 1.17 1.17 1.18 0.16 Ag 0.17 Ag 0.18 12 0.19 53 05 53 05 53 05 57 09 53 57 57 53 68 70 57 57 57 53 68 47 29	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 57.7 80.2 60.9 16.1 4.8		17.90 45.26 101.08 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.04 0.02 0.	8 14 13 13 13 14 10 11 11 11 11 11 11 11 11 11 11 11 11
•	Au-Ag UpperG	EP zono	Sects of 3350 3355 3360 3360 3370 3370 3375 3360 3375 3360 3370 3375 3360	BKZ3375 BKZ3375 BKZ3375 BKZ3375 BK BK BK BK BK BK BK BK BK BK BK BK BK	0-07 0-07 1 the 2335 2335 2335 2336 2336 2336 2336 2337 2337 2337 2337	51 84 95.75 e Gol 00-05 50-05 00-10 00-12 50-09 50-03 50-03 50-03 50-03 50-07 00-11 00-12 00-13 50-01	53:1 91.1 10: Fra 162 162 162 185 185 126 220 22 2277 262 357 262	8 5 5 3 2 - 33 2	13.2 2.5 7.3 6.25 168.5 168.5 143 172 181.9 207 131.5 199.6 197 214 285.75 200.5 320.5 320.5 320.5 378.5 324.5	137 191 2.86 ration Inter 5 99 22 1 1 5 99 22 1 1 5 99 22 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 99 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1 1.3 0.7 Val 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 3 0 0 0 2 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0	0.13 1.17 1.17 1.18 0.16 Ag 0.17 Ag 0.18 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.11 13 0.11 13 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 0.11 14	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 57.7 80.2 60.9 16.1 4.8 26.7		17.90 45.26 101.08 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.02 0.02 0.01 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.	Е 141 т: РЬ I I I I I I I I I I I I I I I I I I
•	Au-Ag UpperG	EP zono	Sects of 3350 3355 3360 3360 3370 3370 3375 3360 3375 3360 3370 3375 3360	BKZ3375 BKZ3375 BKZ3375 BKZ3375 BK BK BK BK BK BK BK BK BK BK BK BK BK	0-07 0-07 1 the 2335 2335 2335 2336 2336 2336 2336 2337 2337 2337 2337	51 84 95.75 e Gol 00-05 50-05 00-10 00-12 50-09 50-03 50-03 50-03 50-03 50-07 00-11 00-12 00-13 50-01	53:1 91.1 10: Fra 162 162 162 185 185 126 220 22 2277 262 357 262	8 5 5 3 2 - 33 2	13.2 2.5 7.3 6.25 168.5 168.5 143 172 181.9 207 131.5 199.6 197 214 285.75 200.5 320.5 320.5 320.5 378.5 324.5	137 191 2.86 ration Inter 5 99 22 1 1 5 99 22 1 1 5 99 22 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 99 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1 1.3 0.7 Val 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 3 0 0 0 2 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0	0.13 1.17 1.17 1.18 0.16 Ag 0.17 Ag 0.18 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.19 12 0.11 13 0.11 13 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 14 0.11 0.11 14	0.07 0.40 0.27 BKZ. (ppm) 47.6 106.2 407.8 546.6 82.7 117.8 108.4 252.5 95.8 56.4 57.7 80.2 60.9 16.1 4.8 26.7		17.90 45.26 101.08 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.02 0.02 0.01 0.02 0.04 0.04 0.04 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.02 0.	Е 141 1 (((((((((((((((((

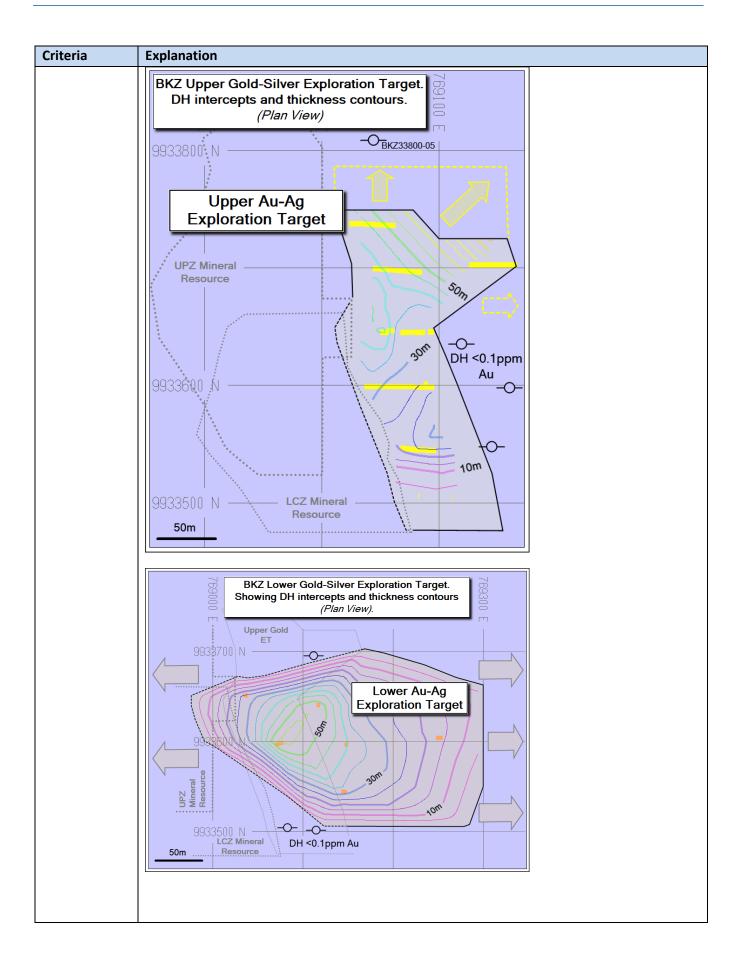
eria	Explanatio	n									
	Summe	arv ta	hula	tion of	DH grades for the 22	holes	hat in	tercer	nt Exploi	ration T	araet
				-					•		
	Zones (Dola	aom	ain text	t indicates Exploratio	on rarge	et zone	e inter	cept):		
	Hole	From	To	Interval	Domain [RE Code]	Cu (%)	РЬ (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		48.5 58.5	58.5 59.5	10.0	Sediment_sulphidic UPZ-Low_Grade	0.03	0.11	0.33	0.02	5.08	5.4
		59.5	60.5	1.0	UPZ-High_Grade	0.05	2.05	6.57	0.11	21.6	9.7
		60.5	61.5	1.0	UPZ-Low_Grade	0.03	0.18	1.09	0.12	4.9	12.1
	BKZ33500-03	61.5	65.5	4.0	Sediment_sulphidic	0.69	0.04	0.56	0.23	12.5	24.2
		65.5 84.0	84.0 85.0	18.5	Breccia_silica_sulphide LCZ-Silica_Bx	0.1	0.01	0.21	0.1	2.96	8.5
		85.0	97.0	12.0	Breccia_silica_sulphide	0.03	0.02	0.02	0.5	2.36	9.9
		97.0	114.0	17.0	LCZ-Silica_Bx	2.92	0.03	0.04	0.12	17.96	13.9
		114.0	127.0	13.0	Breccia_silica_sulphide	0.14	0.01	0.04	0.08	1.49	8.8
		50.6 52.0	52.0 53.0	1.4	UPZ-Low_Grade	0.02	0.61	1.23 2.87	0.02	9.1	6 5.2
		52.0	64.0	11.0	UPZ-High_Grade Breccia_silica_sulphide	0.08	0.05	0.12	0.07	6.39	5.2
		64.0	68.0	4.0	LCZ-Silica_Bx	0.95	0.13	1.31	0.2	26.25	21.5
	BKZ33500-04	68.0	102.0	34.0	Breccia_silica_sulphide	0.09	0.04	0.22	0.12	9.94	11.2
		102.0	109.0	7.0	LCZ-Mass_Sulphide Breccia_silica_sulphide	0.11	0.23	0.38	0.07	16.43 10.23	16.6 6.8
		112.0	125.0	13.0	LCZ-Silica_Bx	0.11	0.01	0.07	0.04	11.86	10.4
		125.0	128.0	3.0	Other	0.02	0.01	0.04	0.01	5.1	4.4
		0.0	129.0	129.0	Other	0.01	0.01	0.01	0.01	0.31	2.4
		129.0	131.0	2.0	UPZ-Low_Grade Sediment_sulphidic	0.05	0.32	0.83	0.03	12.9	7.4
		140.2	162.5	22.3	Breccia_silica_minor_hematite	0.05	0.04	0.54	0.03	13.89	9.3
	BKZ33500-05	162.5	168.5	6.0	Breccia_silica_hematite	0.02	0.98	0.01	0.7	47.58	6.8
	DIVESSOOD	168.5	195.5	27.0	Breccia_silica_minor_hematite	0.04	0.25	0.01	0.16	12.23	7.4
		195.5 259.5	207.6	12.1	Breccia_silica_sulphide Other	0.32	0.1	0.01	0.06	3.12	7.3
		233.3	306.5	35.3	Breccia_silica_hematite	0.01	0.52	0.01	0.00	3	6.3
		306.5	349.5	43.0	Other	0.02	0.01	0.04	0.01	1	5.5
		10.0	117.0	107.0	Other	0.01	0.01	0.02	0.01	0.37	3.5
		117.0	119.0	2.0	UPZ-High_Grade UPZ-Lo v _Grade	0.19	4.67	10.34	0.38	177	7.5
		124.0	124.0	4.0	Sediment_sulphidic	0.01	0.13	0.41	0.00	7.48	6.9
	BKZ33500-06	128.0	138.0	10.0	Breccia_silica_minor_hematite	0.02	0.17	0.28	0.03	5.95	6.5
		138.0	143.0	5.0	Breccia_silica_hematite	0.01	0.64	0.01	0.33	106.2	4.9
		143.0	198.0 212.1	55.0	Breccia_silica_minor_hematite Breccia_silica_sulphide	0.11	0.67	0.01	0.23	31.21	7.2
		276.5	359.0	82.5	Other	0.02	0.01	0.03	0.00	0.52	5.2
		39.8	46.0	6.2	Other	0.01	0.01	0.01	0.01	0.38	3.3
		46.0	47.0	1.0	Sediment_sulphidic	0.02	0.12	0.27	0.02	7.2	5.8
		47.0	49.0 50.0	2.0	UPZ-Low_Grade UPZ-High_Grade	0.12	0.29	2.1 5.44	0.11	71.15	8.4
		50.0	51.0	1.0	Sediment_sulphidic	0.25	0.13	0.25	0.07	33	13.2
		51.0	58.0	7.0	LCZ-Mass_Sulphide	1.24	0.07	0.21	0.26	26.39	38.2
	BKZ33550-03	58.0	59.0 61.0	1.0	LCZ-Silica_Bx	1.04	0.06	0.15	0.08	5	10.7
	DR2000000	59.0	61.0 66.0	5.0	Breccia_silica_sulphide LCZ-Silica_Bx	1.32	0.04	0.01	0.12	9.76	16.6
		66.0	68.0	2.0	LCZ-Mass_Sulphide	1.91	1.56	0.24	0.13	16.85	22.6
		68.0	78.0	10.0	LCZ-Silica_Bx	0.56	0.39	0.27	0.12	7.3	14.2
		78.0	84.0 88.0	6.0	Breccia_silica_sulphide LCZ-Silica_Bx	0.08	0.53	0.01	0.11	4.98	12.3
		84.0 88.0	96.2	4.0	Breccia_silica_sulphide	0.49	0.45	0.01	0.18	14.9	12.3
		96.2	122.3	26.2	Breccia_silica_minor_hematite	0.01	0.16	0.01	0.16	14.96	7.9
		77.0	81.0	4.0	Other	0.04	0.1	0.28	0.03	5.22	3.1
		85.0	100.5	15.5	Sediment_sulphidic UPZ-High_Grade	0.31	0.12	0.28	0.08	15.92	11.1
	BKZ33550-05	114.0	114.0	3.0	UPZ-High_Grade UPZ-Low_Grade	0.48	2.09	0.41	2.42	1374.67	39
		117.0	172.0	55.0	Breccia_silica_hematite	0.13	0.95	0.03	4.12	407.76	23.6
		172.0	193.4	21.4	Breccia_silica_minor_hematite	0.02	0.46	0.07	0.25	39.56	4.8
		17.3	147.0	129.7	Other Sediment subhidie	0.01	0.01	0.01	0.01	0.33	2.3
		147.0	159.5 175.5	12.5	Sediment_sulphidic Sediment_sulphidic	0.03	0.02	0.08	0.01	0.89	4.7
		175.5	195.5	20.0	Other	0.02	0.05	0.01	0.01	3.16	2.6
	BKZ33550-07	195.5	205.5	10.0	Sediment_sulphidic	0.01	0.02	0.02	0.01	1	3.4
		205.5	212.5	7.0	Other Recently office the entity	0.01	0.01	0.01	0.01	0.44	4
		259.0 294.5	294.5 357.5	35.5	Breccia_silica_hematite Breccia_silica_hematite	0.04	0.51	0.08	0.31	80.18 22.59	8.2
				78.0	Other		0.23	0.01	0.01		5.7
		357.5	435.5	78.0	Other	0.02	0.01	0.04	0.01	0.5	5.7

Hole	From	То	Interval	Domain [RE Code]	Cu (%)	Pb (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
	50.0	53.0	3.0	UPZ-Low_Grade	0.11	1.1	2.43	0.06	78.3	8.1
	53.0	56.0	3.0	UPZ-High_Grade	0.98	7.42	23.07	0.26	246	14.1
BKZ33600-07	56.0	79.0	23.0	Breccia_silica_sulphide	0.03	0.54	0.03	0.38	33.97	8
	79.0	100.0	21.0	LCZ-Silica_Bx	1.13	1.02	0.03	0.23	12.09	21.5
	100.0	157.2 78.5	57.2	Breccia_silica_minor_hematite	0.02	0.31	0.01	0.33	15.17	12.2
	78.5	82.5	4.0	Other Sodimont culphidia	0.01	0.07	0.2	0.01	5.15	4.6
BKZ33600-10	82.5	83.5	1.0	Sediment_sulphidic UPZ-High_Grade	0.03	12.63	0.10	0.01	137	5.2
	83.5	181.9	98.4	Breccia_silica_hematite	0.24	4.95	0.01	2.45	546.55	0.2
	61.3	218.0	156.7	Other	0.01	0.01	0.01	0.01	0.47	3.1
BK/200000_11	218.0	225.5	7.5	Sediment_sulphidic	0.02	0.07	0.09	0.03	4.06	5.6
BKZ33600-11	278.4	320.5	42.1	Breccia_silica_hematite	0.01	0.16	0.01	0.56	60.91	4.4
	320.5	350.0	29.5	Breccia_silica_hematite	0.03	0.36	0.01	0.17	48.89	12.7
	50.0	108.0	58.0	Other	0.01	0.01	0.01	0.01	0.26	2.4
	173.0	176.5	3.5	UPZ-High_Grade	1.19	4.31	8.94	0.43	146.14	7.9
	176.5	184.7	8.2	UPZ-Low_Grade	0.05	0.93	0.05	2.23	113.3	5.6
	184.7	185.8	1.2	Sediment_sulphidic	0.08	0.47	0.01	2.14	243	4.
BKZ33600-12	185.8	207.0	21.2	Breccia_silica_hematite	0.02	0.18	0.01	1.05	82.71	5.4
	207.0	211.3	4.3	Breccia_silica_minor_hematite	0.01	0.05	0.01	0.25	8.42	7.9
	262.2	319.8	57.6	Breccia_silica_hematite	0.02	0.08	0.01	0.47	16.08	6.1
	319.8	327.2	7.5	Breccia_silica_hematite Other	0.01	0.13	0.01	0.16	3.57	4.0
11	80.5	235.2	154.7	Other	0.01	0.01	0.04	0.01	0.42	4.0
	235.2	262.5	27.3	Sediment_sulphidic	0.01	0.01	0.01	0.01	1.45	4.9
BKZ33600-13	262.5	289.9	27.4	Breccia_silica_minor_hematite	0.04	0.03	0.06	0.01	0.99	
DIVESSOOD IS	357.6	378.5	20.9	Breccia_silica_hematite	0.02	0.02	0.04	0.29	4.82	9.2
	430.0	450.5	20.5	Other	0.04	0.01	0.03	0.03	1.7	
	47.4	58.5	11.2	Sediment_sulphidic	0.02	0.2	0.38	0.02	8.88	4.6
	58.5	70.5	12.0	UPZ-High_Grade	0.56	5.25	14.15	0.24	67.64	9.2
	70.5	73.5	3.0	UPZ-Low_Grade	0.92	0.65	1.05	0.16	39.67	17.4
	73.5	79.5	6.0	LCZ-Silica_Bx	0.69	0.09	0.09	0.06	7.5	12.4
BKZ33650-08	79.5	91.5	12.0	Breccia_silica_sulphide	0.3	0.02	0.04	0.06	3.12	8.4
	91.5	96.5	5.0	LCZ-Silica_Bx	0.7	0.04	0.19	0.38	9.86	13.3
	96.5	100.5	4.0	Breccia_silica_sulphide	0.1	0.01	0.01	0.08	2.33	11.4
	100.5	123.5	23.0	LCZ-Silica_Bx	1.28	0.84	0.1	0.13	18.35	12.4
	123.5	142.2	18.7	Breccia_silica_minor_hematite	0.01	0.24	0.01	0.18	9.86	12.4
	95.2	110.0	14.8	Sediment_sulphidic	0.06	0.03	0.13	0.02	5.43	1
BK700050.00	110.0	119.0	9.0	UPZ-High_Grade	0.09	1.98	2.86	0.25	61.7	7.2
BKZ33650-09	119.0	131.5 149.5	12.5 18.0	Breccia_silica_hematite	0.04	1.77	0.03	0.57	117.82	7.6
	149.5	199.6	50.1	Sediment_sulphidic Breccia_silica_hematite	0.06	0.76	0.02	3.09	108.37	7.3
	47.0	121.5	74.5	Other	0.00	0.01	0.03	0.03	0.3	2.0
	189.0	195.0	6.0	Other	0.01	0.01	0.01	0.01	0.29	3.1
	195.0	197.0	2.0	Sediment_sulphidic	0.01	0.19	0.03	0.01	0.25	6
BKZ33650-11	197.0	208.4	11.4	Sediment_sulphidic	0.12	1.4	1.39	0.18	83.11	5.6
	269.0	324.5	55.5	Breccia_silica_hematite	0.01	0.13	0.01	0.79	26.65	9.2
	324.5	363.0	38.5	Breccia_silica_hematite	0.08	0.57	0.01	0.12	11.19	10.2
	363.0	364.0	1.0	Other	0.02	0.02	0.03	0.01	1.4	6
	38.5	147.0	108.5	Other	0.01	0.01	0.01	0.01	1.35	2.5
	147.0	155.0	8.0	Sediment_sulphidic	0.02	0.03	0.1	0.04	5.09	5.6
	155.0	160.0	5.0	UPZ-Low_Grade	0.04	1.06	0.58	0.34	96	7.3
	160.0	163.0	3.0	UPZ-High_Grade	0.44	6.91	0.06	0.28	258.67	5
BV722650 10	163.0	165.6	2.6	Sediment_sulphidic	0.01	0.3	0.02	0.03	12.29	5.
BKZ33650-12	165.6 197.0	197.0 222.6	31.4 25.6	Breccia_silica_hematite	0.04	1.44	0.03	2.53	252.46 23.82	11.
	280.5	281.7	25.6	Breccia_silica_minor_hematite Other	0.02	0.13	0.01	0.41	23.02	0.
	281.7	307.1	25.5	Other Breccia_silica_hematite	0.01	0.01	0.01	0.04	6.6	4.
	307.1	315.0	7.9	Breccia_silica_hematite	0.05	0.07	0.01	0.05	2.19	6.0
	315.0	350.0	35.0	Other	0.03	0.01	0.03	0.00	0.72	5.3
	30.5	64.3	33.8	Other	0.01	0.01	0.01	0.01	0.25	2.0
	64.3	67.5	3.3	Sediment_sulphidic	0.01	0.02	0.04	0.01	4.05	4.
	67.5	73.5	6.0	UPZ-Low_Grade	0.03	0.3	0.8	0.02	11.73	4.6
BKZ33700-07	73.5	76.5	3.0	UPZ-High_Grade	0.56	4.81	15.69	0.57	149	
DRE33100-01	76.5	79.5	3.0	UPZ-Low_Grade	0.1	0.21	1.61	0.1	38	19.6
	79.5	84.8	5.3	Sediment_sulphidic	0.12	0.14	0.29	0.12	17.81	11.2
	84.8	98.0	13.2	LCZ-Silica_Bx	1.09	2.36	3.14	0.4	47.64	12.5
	98.0	210.1	112.1	Breccia_silica_sulphide	0.14	0.1	0.28	0.09	2.74	6.9
	111.0	115.3	4.3	Other	0.03	0.04	0.07	0.01	2.99	2.6
	115.3	117.5	2.3	Sediment_sulphidic	0.05	0.1	0.17	0.04	9.66	5.4
BKZ33700-08	117.5	120.5	3.0	UPZ-Low_Grade	0.09	0.7	1.86	0.06	33.27	8.3
	120.5 126.5	126.5 214.0	6.0 87.5	UPZ-High_Grade Breccia_silica_hematite	1.08	3.82	4.58	0.2	87.17 95.82	24.1
	214.0	278.1	64.1	Breccia_silica_nematite	0.04	0.64	0.02	0.23	7.01	-
	1 214.0	1 210.1	1 04.1	precora_silica_inihor_nematite	0.00	1 0.2	0.01	0.23	r.01	11.8

Criteria	Explanatio	n									
	Hole	From	To	Interval	Domain [RE Code]	Cu (%)	РЬ (%)	Zn (%)	Au (ppm)	Ag (ppm)	Fe (%)
		178.0	197.0	19.0 4.0	Other Other	0.01	0.06	0.01	0.01	0.31	3.5 3.2
	BKZ33700-09	201.0	220.5	19.5	Sediment_sulphidic	0.14	0.72	1.39	0.08	43.61	7
		220.5	285.8	65.3	Breccia_silica_hematite	0.03	0.25	0.02	0.7	56.35	8.8
		285.8	287.0	1.3	Breccia_silica_minor_hematite Other	0.03	0.08	0.01	0.44	16.5 0.48	11.4 2.5
		26.0	29.0	3.0	Sediment_sulphidic	0.05	0.13	0.38	0.01	6.57	4.8
	BKZ33750-05	29.0	34.0 36.0	5.0	UPZ-High_Grade	0.3	5.95 0.36	11.41	0.6	511.62	9.8 9.7
	DK233150-05	34.0	42.0	6.0	UPZ-Low_Grade UPZ-High_Grade	0.04	1.27	3.13	0.12	10.67	8.4
		42.0	51.0	9.0	UPZ-Low_Grade	0.25	0.53	1.14	0.11	7.54	8.7
		51.0 61.7	53.5 65.0	2.5	LCZ-Silica_Bx Sediment_sulphidic	1.37	0.1	0.13	0.07	17.9	8.2 6.6
		65.0	67.0	2.0	UPZ-Low_Grade	0.02	0.00	1.35	0.02	3	5.9
		67.0	74.0	7.0	UPZ-High_Grade	0.04	1.23	2.81	0.05	50	5.2
	BKZ33750-07	74.0	76.0	2.0	UPZ-Low_Grade Sediment_sulphidic	0.03	0.92	1.85	0.04	41.5	5.3 6.1
		84.0	102.0	18.0	LCZ-Silica_Bx	2.35	1.06	1.03	0.34	71.01	13.9
		102.0	201.6	99.6	Breccia_silica_sulphide	0.15	0.17	0.56	0.12	8.11	9.2
		87.0	95.0	8.0 5.0	Sediment_sulphidic UPZ-Low_Grade	0.01	0.03	0.07	0.03	9.6 31.52	4.3
	DK200750.00	100.0	103.0	3.0	UPZ-High_Grade	0.00	1.93	6.96	0.02	70.37	6.8
	BKZ33750-08	103.0	109.0	6.0	UPZ-Low_Grade	0.06	0.56	0.95	0.07	30.53	6.4
		109.0	115.0	6.0	Breccia_silica_sulphide	0.03	0.13	0.07	0.24	12.43	4.3
		115.0	200.4	85.4	Breccia_silica_hematite	0.02	0.6	0.01	0.57	57.74	4.1
Data aggregation methods Relationship	Explore Sample Evalua High guinfluen volume "Estim (below Observ	ation es we tion. rade 2 ce re ce of in ation <u>).]</u>	Targo re ler 2m co strict ofluer of ap	ets. omposi ed in th oce par oproxin arding	n TIN modelling proce eighted to generate 2 tes were identified fr ne target approximat ameters are element nate size and grade o drill hole attitude an	2m com om log ion pro and do f Explo d inter	pposite proba ocess. omain ration cept g	es for l ability [Restr deper Targe rade a	Explorat plots an iction th odent. Ro ets" sect	ion Tar <u>o</u> nd their nreshola efer to t ion for o nclusive	get volume o ls and he details due to th
between mineralisation widths and ntercept engths Diagrammes	grade ; zones/ Upper drilled	for ea doma Gold- ortha	ich of iins, d Silve ogond	f the 5 o althoug r Explo al to the	mbers for each drill t estimated elements v ih there is suggestion ration Target holes re e Target mineralisatio	within t that a eturn si on's tai	the mo lown-o ignifico bular <u>o</u>	odellec lip drii antly h geome	l Explore lling dire nigher ge etry.	ation Ta ections v rades th	rget vithin the an those
Balanced reporting	Entire	samp	le int	ervals	intercepts inserted in have been composite ction of this table.		-				this tabl
Other substantive exploration data	2022 E criteric • KSK ha	<i>xplor</i> a <i>head</i> s und isatio Stre Roc	ation dings lertal on in t am s kchip phys	Target in this cen the cargetin edimen sampl ics: Magnet	following programm ng extensions and rep nt sampling ing	<i>taset a</i> nes whi	i <i>re disc</i> ich ado	c <i>ussea</i> d furth	l <i>under d</i> ner data	appropriation	<i>iate</i> ormation

Criteria	Explanation
Further work	• Infill and extension drilling and evaluation of economic parameters is required to confirm
	and convert Exploration Targets to Mineral Resources.


Estimation of approximate size and grade of Exploration Targets.


Criteria	Explanation
Criteria Database integrity	 Sampling, comminution, subsampling and assay Quality Assurance, Quality Control programmes/analyses and security protocols instil confidence in the original data validity, robustness and integrity. Assay and geological datasets at KSK are stored in a purpose constructed Access[™] Database. Design, upkeep and security are the responsibility of KSK personnel. H&A constructed an independent drillhole assay dataset from the site sampling sheets and the ITS laboratory and GeoServices SIF files for use in the 2022 BKZ Project Evaluation. This dataset is stored in a Minesight[™] TORQUE (SQL) database. Prior to evaluation H&A cross-checked the TORQUE dataset with the KSK dataset and confirmed that the datasets are identical and unchanged over time. Mr Patrick Creenaune of Creenaune Geological Consulting reviewed/audited all geological logging by checking codes against his observations from core photos and by cross-checking intervals with assay data. Mr Creenaune produced a mineralisation-control log for H&A to use as a base in constructing the Triangulated Irregular Network models for the BKZ Exploration Target Evaluation. SG (DBD) data was reviewed (2017 measurements) and an additional 316 measurements were undertaken in 2018 to check the original data for sample selection bias. No bias was uncovered. SG samples were selected according to the 2018 protocols throughout the 2021-22 drill programme. All drillhole datasets were subjected to interval checks (missing, overlaps, gaps), element field checks (missing, detection limit conversion, over range assay substitution). Sample locations (49 holes within +/-3m with maximum deviation of 7.8m, except for holes BKZ33600-11,12,13, drilled from the same platform and differ by 16m). All 1999 and 2018 downhole survey data was reviewed and deviations found to be within acceptable limits for HQ3 diamond drilling utilising a 1.5m barrel. KSK rig set-up surveys (0.00m depth unde
	• Basic statistics confirmed that the Vulcan ¹¹¹ compositing routine was correctly employed and executed on the assay dataset in generating the 2m composite evaluation dataset.
Site visits	 H&A has not visited the BKZ site. A planned trip in late 2017 was cancelled as access to Beruang Kanan Camp was blocked by a landslide. Government(s) responses to the COVID pandemic thwarted attempts to visit the site during the 2021-22 drilling. H&A offers the following reasoning in support of the reliability of data and information underpinning the 2022 BKZ Project Evaluation: Three visits were undertaken between 2015 and 2018 to the site core

Criteria	Explanati	on		
Geological interpretation	 (abov Mr Paconsuma miner 	observed, audited monitoring the co logged mineralisa core shed person BKM mineralisatio estimate. • H&A has reviewed recognises the sin galena in the core • H&A is confident to material and that the 2022 BKZ Proj potential. mary of the geology and mineralisatio	and played ar re handling action in holes fr nel are adequa on is correctly r d all data from hilarities with E photos. that the BKM p the BKZ miner ect Evaluation neralisation is with 41 years on-style logs as als were assign	00m to the southeast of BKZ. H&A has n active role in developing and tivities at the BKM core shed and has om BKM. H&A is confident that the KSK tely trained and diligent and that the represented in the 2019 BKM resource and photographs of the core at BKZ and BKM and has recognised sphalerite and protocols are appropriate for the BKZ alisation is appropriately represented in for assessing Exploration Target included under the "Geology" category appropriate experience and KSK the basis for the modelling of the BKZ ed the following logging codes (codes
	Code		Usage Count	
	Bs Bsh	Breccia silica Breccia silica hematite	8 28	
	Bsm		15	
	Bss	Breccia silica sulphide	38	
	Id	Diorite	37	
	Idw	Weathered diorite	1	
	Ifg	Intrusive fine grained	12	
	Sb	Fgr black sediment	33	
	Sbf	Black sed breccia Fault	1	
	Sbm	Sediment sulphidic	8	
	Sbms SVIm	'	22	
	SVIII	Mixed sediment /volc/intrusive	4	
	V	Volcanic	6	
	Vb	Bleached volcanic	50	
	Vh	Hematite Volcanic	8	
	Vm	Mottled Volcanic	7	
	Vs	Fgr Volc silica sulphide	1	
	 An ea 	Weathered sterly dipping mineralisation	hanging walls	surface was created at the base of the
	surfac imme conta	ce represents the upper limit diately below and in most pl ined almost entirely within a	to the minera aces parallels t an extensive an	r intervals logged as Vb and Vm. This lisation. The UPZ in general lies the hanging wall surface and is ad thick shear zone logged as Sbms. The PZ and is truncated by the shear zone.

Explanation
• The Upper Polymetallic Zone was modelled as two domains, a high-grade domain of ≥4
Zn+Pb mineralisation and predominantly of massive sulphide style and a low grade
domain of $\geq 1\%$ & <4% Zn+Pb mineralisation and predominantly of andesitic volcanic
breccia and silica breccia style. The following contact analysis table depicts the distinc
grade tenor differential between the two domains:
Inside >4% total Zn+Pb Inside >1% and <4% total Zn+Pb
Element Average Grade Split by Metres from Contact
-5 -4 -3 -2 -1 1 2 3 4 5 Zn (%) 9.9 8.5 10.5 9.0 6.6 1.7 1.2 1.6 0.6 2.3
Zn (%) 9.9 8.5 10.5 9.0 6.6 1.7 1.2 1.6 0.6 2.3 Pb (%) 3.6 3.8 5.4 3.0 2.2 0.4 0.3 0.3 0.1 0.3
Ag (ppm) 42.9 48.8 50.1 45.1 33.5 23.3 16.2 10.0 10.9 14.7
Au (ppm) 0.46 0.48 0.48 0.46 0.29 0.20 0.17 0.19 0.26 0.24
The following contact analysis table depicts the distinct grade tenor differential betwe
the $\geq 1\%$ Zn+Pb domain and intervals not domained:
Inside >1% and <4% total Zn+Pb Outside All domains
Element Average Grade Split by Metres from Contact
Zn (%) 2.4 1.3 1.7 1.6 2.1 0.3 0.4 0.4 0.5 0.4
Pb (%) 0.8 0.4 0.3 0.3 0.8 0.1 0.1 0.1 0.2 0.1
Ag (ppm) 5.6 5.2 6.1 12.9 11.3 7.2 4.8 7.1 4.6 3.4
Au (ppm) 0.14 0.12 0.09 0.10 0.10 0.06 0.07 0.06 0.05 0.05
2022 Exploration Targets: Orthogonal Cross Section (view to 030deg)
(view to 030deg)
>4% Pb+Zh >1% & <4% Pb+Zn HW Volcanics Resource Estimate Resource Etimate Domain
Domain A
250 Copper Exploration Target
Zing Lond Europeaning
Zinc Lead Exploration Target
200 Target
Target
Z00 Target Volcanics Breccia Silica Sulphide Hematite >0.2% Cu
Z00 Target Volcanics Breccia Silica Sulphide Hematile
Z00 Target Volcanics Breccia Silica Breccia Silica Sulphide Hematite Sulphidic Seds >0.2% Cu Breccia Silica Breccia Silica
Z00 Target Volcanics Breccia Silica Sulphide Breccia Silica >0.2% Cu Breccia Silica Domain Breccia Silica Diorite Gold Exploration Targets
Z00 Target Volcanics Breccia Silica Sulphide Breccia Silica Sulphide Breccia Silica Jonain Breccia Silica
200 Target Volcanics Breccia Silica Sulphide Breccia Silica Sulphide Breccia Silica Sulphide Breccia Silica Domain Breccia Silica Domain Breccia Silica Diorite Gold Exploration Targets 100 DH Display >1% <4% Pb+Zn
Z00 Target Volcanics Breccia Silica Sulphide Breccia Silica Sulphide Breccia Silica J50 Resource Estimate Domain Breccia Silica Diorite Gold Exploration Targets V0 DH Display >1% <4% Pb+Zn
DH Display Gold Exploration Targets 90 PH Display >1% 4% Pb+Zn >0.2% Cu Breccia Silica Breccia Silica Breccia Silica
DH Display Cul Breccia Silica Breccia Silica 100 DH Display Souther and Lower 100 DO Display Souther and Lower 100 Display Souther and Lower Breccia Silica
DH Display Gold Exploration Targets 90.2% Cu Breccia Silica 9100 DH Display >1% <4% Pb+Zn
DH Display Gold Exploration Targets 90.2% Cu Breccia Silica 9100 DH Display >1% <4% Pb+Zn
DH Display Gold Exploration Targets 90.2% Cu Breccia Silica 9100 DH Display >1% <4% Pb+Zn

 The Lower Copper Zone was modelled as two domains, each defined by a 0.2%Cu lower cut (as used in the modelling of BKM mineralisation, 800m to the south of BKZ). The majority of the LCZ comprises of silica breccia style mineralisation. The mineralisation not only dips to the west where it splits into three lenses (south of 9933550N) but also is interpreted to plunge steeply to the north, north of 9933650N). The average grades for drill intersections in the LCZ domains are shown here: <u>The following plan views presents the modelled dimensions of the volumes identified as Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (<i>Plan View)</i>. </u> <u>BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (<i>Plan View</i>). </u> 	cut (as used in the modelling of BKM mineralisation, 800m to the south of BK2). The majority of the LCZ comprises of silica breccia style mineralisation with a minor component of massive sulphide (pyrite) style mineralisation. The mineralisation not only dips to the west where it splits into three lenses (south of 9933550N) but also is interpreted to plunge steeply to the north, north of 9933600N. The average grades for drill intersections in the LCZ domains are shown here: 	Criteria	Explanation		
Domain Cu (%) Au (ppm) Ag (ppm) Pb (%) Zn (%) Fe (%) LCZ-SIlica_Breccia 1.31 0.15 19.3 0.68 0.25 14.0 Dimensions • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (Plan View). 933800 N • The following plan view down dip extrapolation. (Plan View). 933800 N • Other the state of	Average Grade of DH Samples LCZ-Silica_Breccia 1.31 0.15 19.3 0.68 0.25 14.0 LCZ-Massive_Sulphide 1.67 0.13 18.4 0.20 0.50 24.0 Dimensions • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (Plan View). 933800 N • The following plan views presents the modelled dimensions of the volumes identified as Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (Plan View). 933800 N • The following plan views presents the modelled dimensions of the volumes identified as Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (Plan View). 933800 N • • • • • • • • • • • • • • • • • • •		cut (as used in the modelling of BKM mineralisation, 800m to the south of BKZ). The majority of the LCZ comprises of silica breccia style mineralisation with a minor component of massive sulphide (pyrite) style mineralisation. The mineralisation not only dips to the west where it splits into three lenses (south of 9933550N) but also is interpreted to plunge steeply to the north, north of 9933600N. The average grades for		
Col (%) Ca (%) <thca (%)<="" th=""> Ca (%) Ca (%)</thca>	Dimensions • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts, hickness contours and down dip extrapolation. (Plan View). 933600 N • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BKZ:		Average Grade of DH Samples		
Dimensions • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (Plan View). 933800 N 0.10 0.11 1.67 0.12 1.67 0.13 1.67 0.13 1.67 0.18 1.67 0.18 1.67 0.18 1.67 0.18 1.67 1.68 1.67	LC2-Massive_Sulphide 1.67 0.13 18.4 0.20 0.50 24.0 Dimensions • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts., thickness contours and down dip extrapolation. (Plan View). G33800 N • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets. Showing DH intercepts., thickness contours and down dip extrapolation. (Plan View). G33800 N • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets. Showing DH intercepts., thickness contours and down dip extrapolation. (Plan View). G33800 N • The following plan views presents the modelled dimensions of the volumes identified as the following plan views presents the modelled dimensions of the volumes identified as the following plan views presents the following plan views plan views presents the following plan views presents the following plan views presents the following plan views plan views presents the following plan views presents the following plan views plan vi		Cu (%) Au (ppm) Ag (ppm) Pb (%) Zn (%) Fe (%)		
Dimensions • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (Plan View). 933800 N To Target Target 933800 N To Target Target 933600 N To Target Target Target 933600 N To Target T	Dimensions • The following plan views presents the modelled dimensions of the volumes identified as Exploration Targets at BK2: BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (Plan View). 933800 N Image: Control of the volume sidentified as the volume s				
Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Target DH in Sheared Sed: >1%Zn DH in Sheared Sed: >1%Zn DH in Sheared Sed: >1%Zn CZ Mineral Resource Target Target DH in Sheared Sed: (%Zn CZ Mineral Resource Target Target DH in Sheared Sed: (%Zn CZ Mineral Resource Target Target Target DH in Sheared Sed: (%Zn Target Target Target DH in Sheared Sed: (%Zn Target Target Target DH in Sheared Sed: (%Zn Target Targe	Exploration Targets at BKZ: BKZ Zn-Pb Exploration Target. Showing DH intercepts, thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours and down dip extrapolation. (<i>Plan View</i>). 933800 N Thickness contours		202 Masive_oupmac 107 0.15 10.4 0.20 0.50 240		
50m 8			thickness contours and down dip extrapolation. (Plan View). 9933800 N 2n-Pb Exploration Target DH in Sheared Sed: >1%Zn 0H		

 Estimation and modelling The estimation of the BKZ 2022 Exploration Target potential was undertaken utilizing Minesight[™] software for domaining utilising triangulated irregular network models ("TIN") and Vulcan[™] software for block modelling ("BM") and inverse distance squared grade interpolation ("ID2"). Five domains were identified and TIN models constructed to guide grade interpolation. These are: BKZ_10_solid_ZnPb-1: A continuation of domains modelled as UP2 low grade mineralisation (21% and 44% Zn+Pb) BKZ_30_Solid_OSBX: A continuation of domains modelled as UP2 high grade mineralisation (24% Zn+Pb) BKZ_30_Solid_GSBX: A continuation of domains modelled as UC2 quarts silica brecia mineralisation (20.2% Cu) Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (20.5ppm Au) Solid_g_BKZ_Bsh2_27: Lower Gold-Silver domain (20.5ppm Au) Solid_K_KBKZ_Bsh2_27: Lower Gold-Silver domain (20.2ppm Au)<!--</th-->
and modelling Minesight [™] software for domaining utilising triangulated irregular network models ("TIN") and Vulcan [™] software for block modelling ("BM") and inverse distance squared grade interpolation ("ID2"). • Five domains were identified and TIN models constructed to guide grade interpolation. These are: • BKZ_10_solid_ZnPb-1: A continuation of domains modelled as UPZ low grade mineralisation (21% and <4% Zn+Pb) • BKZ_20_solid_ZnPb-4: A continuation of domains modelled as UPZ high grade mineralisation (24% Zn+Pb) • BKZ_30_Solid_QSBX: A continuation of domains modelled as LCZ quartz silica breccia mineralisation (20.2% Cu) • Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (20.2ppm Au) • Solid_k_k_BKZ_Bsh2_27: Lower Gold-Silver domain (20.2ppm Au) • Solid_k_k_BKZ_Bsh2_27: Lower Gold-Silver domain (20.2ppm Au) • 2m composites were employed for estimating the Exploration Target potential at BKZ. • Both the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grade sthat deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: • 10 • 03 • 03 • 04 • 05 • 05
 ("TIN") and VulcanTM software for block modelling ("BM") and inverse distance squared grade interpolation ("ID2"). Five domains were identified and TIN models constructed to guide grade interpolation. These are: BKZ_10_solid_ZnPb-1: A continuation of domains modelled as UP2 low grade mineralisation (>1% and <4% Zn+Pb) BKZ_30_Solid_QSBX: A continuation of domains modelled as LCZ quartz silica breccia mineralisation (>2.4% Zn+Pb) BKZ_30_Solid_QSBX: A continuation of domains modelled as LCZ quartz silica breccia mineralisation (>2.4% Zn+Pb) Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (>20.2ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (>20.2ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (>20.2ppm Au) Sond the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, 2n, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ opopulation distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Eitement Domain Grade Cut With Grade Restriction Radius (m) Au 20 0 0.8 30 50 15 0 25 10 0 0.8 30 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1
 grade interpolation ("ID2"). Five domains were identified and TIN models constructed to guide grade interpolation. These are: BKZ_10_solid_ZnPb-1: A continuation of domains modelled as UP2 low grade mineralisation (≥1% and <4% Zn+Pb) BKZ_20_solid_ZnPb-4: A continuation of domains modelled as UP2 high grade mineralisation (≥4% Zn+Pb) BKZ_30_Solid_CSBX: A continuation of domains modelled as LC2 quartz silica breccia mineralisation (≥0.2% Cu) Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (≥0.2pm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2pm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2pm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2pm Au) Solid_belts were employed for estimating the Exploration Target potential at BKZ. Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grade sthat deviate significantly from the observed upper log₁₀ oppulation distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Immediation 1775 170 50 50 25 Ag 274 30 50 50 25 Au 220 0.08 50 50 25 Au 20 0.08 50 50 25 Au 20 0.08 50 5
 Five domains were identified and TIN models constructed to guide grade interpolation. These are: BKZ_10_solid_ZnPb-1: A continuation of domains modelled as UPZ low grade mineralisation (≥1% and <4% Zn+Pb) BKZ_30_Solid_ZNPb-4: A continuation of domains modelled as UPZ high grade mineralisation (≥4% Zn+Pb) BKZ_30_Solid_QSBX: A continuation of domains modelled as LCZ quartz silica breccia mineralisation (≥0.2% Cu) Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (>2.5ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (>2.0pm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (>2.0pm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (>0.2pm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, 2n, Pb, Ag and Au for each domain and outlier values identified (extreme grade composites from impacting on blocks at distance from their location: <u>10.3330</u> <u>20.530</u> <u>10.530</u> <u>10.530</u> <u>10.530</u> <u>10.530</u> <u>10.530</u> <u>10.530</u> <u>10.530</u> <u>10.530</u> <u>10.530</u>
These are: 0 BKZ_10_solid_ZnPb-1: A continuation of domains modelled as UP2 low grade mineralisation (≥1% and <4% Zn+Pb)
 BKZ_10_solid_ZnPb-1: A continuation of domains modelled as UPZ low grade mineralisation (21% and <4% Zn+Pb) BKZ_20_solid_ZnPb-4: A continuation of domains modelled as UPZ high grade mineralisation (24% Zn+Pb) BKZ_30_Solid_QSBX: A continuation of domains modelled as LCZ quartz silica breccia mineralisation (20.2% Cu) Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (20.5ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (20.2ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (20.2ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (20.2ppm Au) Composites were employed for estimating the Exploration Target potential at BKZ. Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, 2n, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ oppulation distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location:
mineralisation (≥1% and <4% Zn+Pb)
 BKZ_20_solid_ZnPb-4: A continuation of domains modelled as UP2 high grade mineralisation (24% Zn+Pb) BKZ_30_Solid_QSBX: A continuation of domains modelled as LC2 quartz silica breccia mineralisation (20.2% Cu) Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (20.5ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (20.5ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (20.2ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Domain Grade Cut High Grade Restriction Cut/Restriction Radius (m) threshold (ppm) Ag 24 Ag 30 <li< td=""></li<>
mineralisation (≥4% Zn+Pb) • BKZ_30_Solid_QSBX: A continuation of domains modelled as LCZ quartz silica breccia mineralisation (≥0.2% Cu) • Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (≥0.2pm Au) • Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2ppm Au) • Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2ppm Au) • 2m composites were employed for estimating the Exploration Target potential at BKZ. • Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. • Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log ₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location:
 BKZ_30_Solid_QSBX: A continuation of domains modelled as LCZ quartz silica breccia mineralisation (≥0.2% Cu) Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (≥0.2ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2ppm Au) 2m composites were employed for estimating the Exploration Target potential at BKZ. Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location:
 Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (≥0.5ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2ppm Au) Zm composites were employed for estimating the Exploration Target potential at BKZ. Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Domain Grade Cut High Grade Restriction Cut/Restriction Ratius (m) Threshold (ppm) Threshold (ppm) Threshold (ppm) Roth East Rt Rt Au 20 330 200 50 50 25 30 25 30 50 10 40 70 50 50 25 30 10 40 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70
 Solid_g_BKZ_Bsh1_24: Upper Gold-Silver domain (≥0.5ppm Au) Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2ppm Au) Zm composites were employed for estimating the Exploration Target potential at BKZ. Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Domain Grade Cut High Grade Restriction Cut/Restriction Ratius (m) Threshold (ppm) Threshold (ppm) Threshold (ppm) Roth East Rt Rt Au 20 330 200 50 50 25 30 25 30 50 10 40 70 50 50 25 30 10 40 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 30 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70 50 50 25 40 70 70
 Solid_k_BKZ_Bsh2_27: Lower Gold-Silver domain (≥0.2ppm Au) 2m composites were employed for estimating the Exploration Target potential at BKZ. Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Domain Grade Cut High Grade Restriction Cut/Restriction Radius (m) (ppm) Threshold (ppm) North East RL (20, 330, 200, 50, 50, 125) (20, 330, 200, 50, 50, 25) (20, 330, 200, 50, 50, 25) (20, 330, 200, 50, 50, 25) (20, 330, 200, 50, 50, 25) (20, 30, 20, 50, 50, 25)
 2m composites were employed for estimating the Exploration Target potential at BKZ. Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Domain Grade Cut High Grade Restriction Cut/Restriction Radius (m) Threshold (ppm) North East RL 22 and 230 200 50 50 25 and 25 and 27 and 300 50 50 25 and 27 and 30 200 50 50 25 and 27 and 30 200 50 50 25 and 20 20 50 50 25 and 20 50 50 25 and 20 20 50 50 25 and 20 50 50 25 and 20 20 50 50 50 25 and 20 50 50 25 and 20 20 50 50 50 25 and 20 20 50 50 50 25 and 20 20 50 50 50 25 and 20 50 50 50 25 and 20 50 50 50 50 50 50 50 50 50 50 50 50 50
 Both the 2m composites and the block model were coded by the numbers 10, 20, 24, 27 or 30 as stated in the nomenclature for the domain within which they are located. Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Domain Grade Cut High Grade Restriction Radius (m) (ppm) High Grade Restriction (ppm) North East RR Ag 24 30 20 330 200 50 50 25 30 27 30 50 50 50 25 30 27 30 50 50 25 30 27 30 50 50 25 30 27 30 50 50 25 10 27 30 50 50 25 10 27 30 50 50 25 10 27 30 50 50 25 10 27 30 50 50 25 10 26 27 30 50 50 25 10 24 50 50 50 25
or 30 as stated in the nomenclature for the domain within which they are located. Uog probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log ₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Omain Grade Cut (ppm) High Grade Restriction Cut/Restriction Radius (m) Threshold (ppm) 4 10 175 70 50 50 25 4 10 175 70 50 50 25 4 20 330 200 50 50 25 4 27 30 50 50 25 4 20 0.08 25 25 10 4 20 0.08 25 25 10 4 20 0.08 25 25 10 4 20 300 50 50 25 4 1 25 25 10 4 30000 50 50 25 20 40000 50 50
 Log probability plots of the 2m composite data were generated for Cu, Zn, Pb, Ag and Au for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: Element Domain Grade Cut (ppm) Threshold (ppm) Threshold (ppm) Threshold (ppm) To 5 To 5
for each domain and outlier values identified (extreme grades that deviate significantly from the observed upper log ₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location: $ \frac{Element}{20} \frac{10}{330} \frac{175}{20} \frac{70}{50} \frac{50}{50} \frac{25}{25} \frac{50}{25} \frac{25}{30} \frac{27}{300} \frac{50}{50} \frac{50}{50} \frac{25}{25} \frac{50}{30} \frac{25}{50} \frac{25}{30} \frac{50}{50} \frac{55}{25} \frac{25}{30} \frac{10}{10} \frac{10}{24} \frac{00}{28} \frac{50}{50} \frac{55}{25} \frac{50}{10} \frac{25}{50} \frac{25}{50} \frac{25}{50} \frac{10}{25} $
from the observed upper log ₁₀ population distribution). The following cuts and upper thresholds were applied to restrict the influence of extreme grade composites from impacting on blocks at distance from their location:
Bit is the set of the influence of extreme grade composites from impacting on blocks at distance from their location. Element Ormain Grade Cut Cut/Restriction Relistice Image: from their location North Relistice Image: from their location State is the image: from their location Image: from their location State is the image: from their location Image: from their location State is the image: from their location Image: from their location State is the image: from their location Image: from their location State is the image: from their location Image: from their location State is the image: from their location Image: from their location
Impacting on blocks at distance from their location: Element Domain Grade Cut (ppm) High Grade Restriction Threshold (ppm) Cut/Restriction Rations 10 175 70 50 50 25 20 330 2000 50 50 25 21 20 330 200 50 25 22 330 2000 50 50 25 20 330 2000 50 50 25 21 20 300 50 50 25 20 30 0 0 50 25 30 20 0.0.8 50 50 25 40u 20 0.0.8 25 25 10 22 24 0 0.8 50 25 10 21 22 4000 50 50 25 10 20 24 0 30000 50 50 15 <
ElementDomainGrade Cut (ppm)High Grade Restriction Threshold (ppm)Cut/Restriction Restriction NorthEastRL $Age1017570505025203302005050252033020050502520300705050252072030070505025300705050253000.08505025400.08505025400.08505025400.08505025400.0850502550240.085050412525102541100505025420.0300050502543101000050502544200005050104524200005050104620000505010251047200.01000252510480.0100050501025490.0000505010490.0000505010400.0000505010400.000050501550$
Element $OomainGrade Cut(ppm)High Grade RestrictionThreshold (ppm)Out/Restriction RestrictionNorthEastRLAg10175705050252033020050502520330200505025203302005050252030705050252020300705025300705025253000.085025400.085050254024030050254024025102424102525104024050502540240505025402405050254124050502541240505025420300050501043005050104420000505025442000050501045242000050501046200005050104720034005050482025505010$
Image: Constraint of the image: Constraint of th
Ag 20 330 200 50 50 25 24 (300 50 50 15 27 (300 50 50 25 30 (700 50 50 25 Au (0.08 50 50 10 Au (0.08 25 25 10 Au (0.00 50 50 25 Cu (3000 50 50 25 Au (0.0000 50 50 10 Pb (20 0.0000 50 50 10 2u 0
Ag 24 300 50 50 15 27 300 500 500 25 30 700 500 500 25 Au 100 0.08 500 500 10 Au 20 0.08 25 25 10 Au 24 0.08 25 25 10 20 0.08 25 25 10 21 20 0.08 25 25 10 24 0 90 50 50 25 Cu 24 0 30000 50 50 25 Cu 24 0 30000 50 50 15 Pb 10 10000 50 50 15 30 0 10000 50 50 15 30 0 10000 25 25 10 20 0 30000 50
$ \begin{array}{ c c c c c c c } \hline & 27 & & & & & & & & & & & & & & & & & $
30 30 50 50 25 Au 10 0.8 50 50 10 Au 24 0 0.8 25 25 10 24 0 9 25 25 10 24 0 125 25 10 24 0 102 25 10 24 0 102 25 10 24 0 300 50 25 10 20 24 3000 50 50 25 20 30 30000 50 50 25 30 10000 50 50 15 20 90000 50 50 10 24 20 90000 50 50 15 30 10000 25 25 10 20 20 30000 50 50 15 30 20 <td< td=""></td<>
Au 20 0.8 25 25 10 24 9 25 25 10 20 1 25 25 10 20 10,20 50 25 20 24 3000 50 25 20 24 30000 50 25 20 24 30000 50 25 20 30000 50 50 25 30 10000 50 50 10 20 90000 50 50 10 21 10000 25 25 10 20 34000 50 50 15 20 34000 50 50 15 20 250000 25 25 10
Au 24 9 25 25 10 - - - 1 25 25 10 - 10,20 - 4000 50 50 25 Cu 24 - 3000 50 50 25 Gu 24 - 30000 50 50 25 - 30 - 30000 50 50 25 - 10 - 10000 50 50 10 - 20 - 90000 50 50 10 - 24 - 20000 50 50 10 - 20 - 30000 50 50 10 - 30 - 10000 25 25 10 - 10 34000 50 50 15 - 20 250000 25 25 10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
20 90000 50 10 24 20000 50 25 30 10000 25 25 10 34000 50 50 20 34000 50 50
Pb 24 20000 50 25 30 10000 25 25 10 10 34000 50 50 15 Zn 20 250000 25 25 10
24 20000 50 25 30 10000 25 25 10 10 34000 50 50 15 Zn 20 250000 25 25 10
10 34000 50 50 15 Zn 20 250000 25 25 10
Zn 20 250000 25 25 10

Criteria	Explanation				
	 Cu, Zn, Pb, Ag, Au and Fe grades were estimated into a sub-blocked block model utilising the Vulcan ID2 grade interpolator. BM details are as follows: 				
	Model name : BKZpostest2022 Number of blocks : 32712 Origin : 0.0 0.0 0.0				
	Bearing/Dip/Plunge : 90.0 0.0 0.0				
	Variables Default Type Description				
	cuid2-99.0floatCu ppm ID2 estimateclass-99.0shortClassification 3 inferred 4; expl potential				
	dbddoms -99 short domains for assigning DBD [20 23 24] dbdregress -99.0 float DBD regression with Fe - by domains feid2 -99.0 float Fe% ID2 estimate				
	feid2 -99.0 float Fe% ID2 estimate auid2 -99.0 float Au ppm ID2 estimate agid2 -99.0 float Ag ppm ID2 estimate				
	pbid2 -99.0 float Pb ppm ID2 estimate znid2 -99.0 float Zn ppm ID2 estimate				
	Dimension Offset minimum : 768800.0 9933350.0 -50.0				
	maximum : 769300.0 9933850.0 350.0 Schema [parent]: 25.0 25.0 10.0				
	Schema [subblock non-rregular]: minimum : 5.0 5.0 2.0 maximum : 25.0 25.0 10.0				
	 Grade interpolation Description: Grades were estimated at parent block size and written to sub-b 	locks			
	• Parent blocks discretised at 5mX, 5mY and 2.5mZ directions.				
	 Hard boundaries utilised, i.e. only those composites within a dor estimate grades within that domain. 	nain selected to			
	• A minimum of 8 and maximum of 20 composites allowed.				
	 Composite are selected by box searches (to minimise effects cau grid-configuration drillhole spacing) and mimic overall geometrie domains. 	-			
	 The composite box-search was typically set at 100mN x 100mE a 	nd 1/3 domain			
	thickness. Grade variability is preserved in the RL direction (acroutilising the restricted search radii and in the plane of mineralisa				
	 Composite weights in grade interpolation were applied on an inv 				
	squared basis.All elements for all blocks have been estimated.				
	 The model was validated visually, statistically and by 50m spaced northing and RL swath plots. 	d easting,			
Moisture	 The Exploration Target tonnage factors are based on dry bulk density me assays were undertaken on oven dried sample pulps (105° for minimum size potential (tonnes) is estimated on a dry basis. 				
Environmental	There has been no environmental investigation at this early stage of wor	k on the BKZ			
factors or assumptions	project.				
Tonnage Factors/Dry	 Tonnage factors ("TF") were applied to the BM by the following regression formula: 1. The Zinc-Lead and Copper Exploration Targets [determined for estimating the 				
Bulk Density	UPZ and LCZ domains in the 2022 BKZ RE]:				
	TF = 0.033 * (Cu% + Fe% + Zn% + Pb%) + 2.50 and the adjustment of:				
	If $\{TF < 2.60\}$ then TF = 2.60				

Criteria	Explanation
Evploration	 Upper Gold Exploration Target [regression formula from DBD and Assay data of brecciated silica hematite altered zones]: TF = 0.045 * (Cu% + Fe% + Zn% + Pb%) + 2.60 Lower Gold Exploration Target [regression formula from DBD and Assay data of brecciated silica minor hematite altered zones]: TF = 0.024 * (Cu% + Fe% + Zn% + Pb%) + 2.60 The reported Exploration Target size and grade ranges derived from the modelling are
Exploration Target Zones; potential Size and Grade.	 For the Zinc-Lead Exploration Target within the current broad spaced drilled area, between:
	 The extent of the modelled >4.0%Zn+Pb Exploration Target domain, and >4.0%Zn lower cut.
	[Reported as between approximately 200KT and 250KT of semi-massive to massive sulphide mineralisation with approximate grades ranging between 6% and 9% Zn and 3% and 5% Pb.]
	 For the Copper Exploration Target, between: The extent of the modelled >0.2%Cu Exploration Target domain, and >1.0%Cu lower cut.
	[Reported as between approximately 100KT and 150KT of stringer to semi-massive mineralisation with approximate grades ranging between 1.0% and 1.5% Cu and 20ppm and 50ppm Ag.]
	 For the Upper Gold-Silver Exploration Target within the current broad spaced drilled area (south of 9933750NN), between: >0.5%Au lower cut, and >1.0%Au lower cut.
	[South of 9933600N. Reported as between approximately 500KT and 600KT of silica- hematite mineralisation with approximate grades ranging between 2.0ppm and 3.0ppm Au and 300ppm and 400ppm Ag.]
	[North of 9933600N. Reported as between approximately 1500KT and 2000KT of silica-hematite mineralisation with approximate grades ranging between 1.0ppm and 200ppm Ag.]

Criteria	Explanation
	 For the Upper Gold-Silver Exploration Target, north and north-eastern extension area: >0.5%Au lower cut.
	[Reported as between approximately 1000KT and 1200KT of silica-hematite mineralisation with approximate grades ranging between 0.5ppm and 1.0ppm Au and 30ppm and 60ppm Ag.]
	 For the Lower Gold-Silver Exploration Target: >0.5%Au lower cut.
	[Reported as between approximately 1000KT and 1500KT of silica-hematite mineralisation with approximate grades ranging between 0.4ppm and 0.7ppm Au and 20ppm and 40ppm Ag.]

Abbreviation	Explanation
ARS	Asiamet Resources Limited
ВКМ	Beruang Kanan Main
BKS	Beruang Kanan South
BKW	Beruang Kanan West
BKZ	Beruang Kanan Zinc
BM	Block Model
CRM	Certified Reference Material
DBD	Dry Bulk Density
H&A	Hackman and Associates
ID2	Inverse Distance Squared
ITS	PT Intertek Utama Services
JORC	Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition)
кѕк	PT Kalimantan Surya Kencana
LCZ	Lower Copper Zone
LIDAR	Light Detection And Ranging
QA/QC	Quality Assurance / Quality Control
QC	Quality Control
RQD	Rock Quality Descriptor
SCC	Sericite-Chlorite-Clay Alteration
SIF	Standard Industry Format
SQL	Structured Query Language
TF	Tonnage Factor
TIN	Triangulated Irregular Network
UPZ	Upper Polymetallic Zone
UTM	Universal Transverse Mercator
VBA	Visual Basic for Applications

List of Abbreviations specific to BKZ Project Exploration Target potential Explanatory Notes