Explanatory Notes: Beutong Copper-Gold-Silver-Molybdenum 2019 Resource Estimate procedures, observations and outcomes; presented according to the JORC TABLE 1 checklist of the JORC Code (2012 Edition). Compiled by Hackman and Associates Pty. Ltd., January 2019.

This technical explanation of the Beutong Cu-Au-Ag-Mo 2019 Resource Estimate follows the format of Table 1 in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). It outlines activities undertaken by Hackman & Associates Pty Ltd ("H&A") in generating the estimate and presents outcomes and observations material to the understanding of the mineralisation and risks associated with the resource estimate.

The Beutong 2019 Resource Estimate deals with the copper-gold-silver-molybdenum mineralization for the Beutong prospect located 60 kilometres north of Suka Makmue on Aceh's west coast (Figure 1).

The Beutong project area is subject to a 10,000 hectare IUP Production license held 100% by PT Emas Mineral Murni (EMM, license no. 66 /1/IUP/PMA/2017 "the Beutong IUP"). EMM has two shareholders. It is 80% owned by the Singaporean domiciled Beutong Resources Pte. Ltd. (BRPL) and 20% by the Indonesian domiciled PT Media Mining Resources (MMR). BRPL is in turn 100% owned by Tigers Copper Singapore No 1 Pte. Ltd. (TCS) which in turn is 100% owned by Asiamet Resources Limited (ARS).

The Beutong IUP is currently within its second year of a 20 year initial tenure period which, if kept in good standing, may be extended for a further 2 x 10 years, taking the ultimate expiry date to the 18th December 2057.

Figure 1: Beutong Prospect Location Map (base maps from public open source images)

The 2019 Beutong Cu-Au-Ag-Mo Resource Estimate was undertaken in accordance with the guidelines set out in the CIM "Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines" (CIM Guidelines) and the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012). The Beutong Resource was, in 2014 originally reported under the auspices of the Canadian National Instrument 43-101 (Standards of Disclosure for Mineral Projects (NI 43-101)) by Kalimantan Gold Corporation Limited and Tigers Realm Metals Pty. Ltd. and this document is available on the ARS website and in the Canadian Public Securities Documents and Information Database (SEDAR). These explanatory notes follow

the reporting guidelines set out in the JORC TABLE 1 checklist of the JORC Code (2012) and are filed on the ARS website. EMM has compiled this document to satisfy disclosure requirements for the public reporting of resources according to the JORC Code (2012 Edition).

This resource estimate is based on the EMM and historical geological databases as at 31st December 2018 and the geological, clay and oxidation interpretations by Steve Hughes of PT Tigers Realm Consultants Indonesia (an associated company to ARS). The data analysis, triangulation, domaining, block modelling and grade interpolation was undertaken by Duncan Hackman of Hackman and Associates Pty. Ltd. and the geostatistical analysis and kriging strategy was undertaken by Trent Strickland of Quantitative Group Pty. Ltd.

The January 2019 Resource Estimate is an update of the November 2014 Resource Estimate for the porphyry and skarn mineralisation on the project and includes additional data and information from seven holes drilled in 2018 into the porphyry mineralisation. The skarn mineralisation estimate at Beutong is unchanged from the November 2014 Resource Estimate. The 2019 resource model covers the 1500m strike extent of the mineralisation at Beutong and the 200 to 500m width the porphyry system. Porphyry mineralisation is open to the east, west and at depth. The 600m by 50m skarn body to the north of the porphyry is included in the resource estimate and is open to the east, west and at depth.

The January 2019 Resource Estimate is materially the same as the November 2014 Resource Estimate.

The 2019 resource model is underpinned by data from 113 Diamond Drill holes (33,325m) containing 16,493 logged and assayed, mainly 2m and 3m intervals. Sample data was composited to 3m intervals and flagged by the domains defined in the geological interpretation. Three passes of Ordinary Kriging were employed to interpolate copper, gold, silver, molybdenum, and arsenic grades within domains into a sub-blocked model (arsenic not reported with resource figures). High grade cuts and restrictions were applied. The resource estimate has been classified based on data density, data quality, confidence in the geological interpretation and confidence in the copper grade interpolation.

Beutong 2019 Resource Estimate - Report at 0.3% Cu Lower Cut [EMM 100%: ARS 80% and MMR 20%]											
Classification	Mineralisation	Tonnes		Grade Metal							
(JORC 2012)		(Mt)	Cu (%)	Au (ppm)	Ag (ppm)	Mo (ppm)	Cu (Kt)	Au (kOz)	Ag (kOz)	Mo (Kt)	
Measured	East Porphyry	34	0.67	0.13	1.68	90	226	142	1830	3	
Indicated	East Porphyry	50	0.57	0.1	1.56	116	281	159	2485	6	
	Skarn	7	0.71	0.28	5.89	8	46	59	1244	0.1	
Inferred	East Porphyry	83	0.54	0.13	2.32	147	450	347	6191	12	
	West Porphyry	321	0.43	0.13	0.78	121	1366	1340	8042	39	
	Outer East Porphyry	6	0.36	0.06	1.12	157	20	11	198	1	
	Outer West Porphyry	5	0.36	0.1	0.84	54	18	16	133	0.3	
	Skarn	5	0.67	0.24	5.1	10	32	37	794	0.0	
Measured	Total	34	0.67	0.13	1.68	90	226	142	1830	3	
Indicated	Total	56	0.58	0.12	2.07	104	327	218	3729	6	
Inferred	Total	419	0.45	0.13	1.14	125	1886	1751	15358	52	
	Total	509	0.48	0.13	1.28	120	2439	2111	20917	61	

The Beutong 2019 Resource Estimate is reported at 0.3% and 0.5% Copper cuts in line with the reporting cuts of other porphyry projects in the Southeast Asia Region (e.g. Batu Hijau, Indonesia and Tampakan, Philippines).

Be	Beutong 2019 Resource Estimate - Report at 0.5% Cu Lower Cut [EMM 100%: ARS 80% and MMR 20%]									
Classification	Mineralisation	Tonnes		G	Me	tal				
(JORC 2012)		(Mt)	Cu (%)	Au (ppm)	Ag (ppm)	Mo (ppm)	Cu (Kt)	Au (kOz)	Ag (kOz)	Mo (Kt)
Measured	East Porphyry	28	0.72	0.13	1.74	92	200	116	1551	3
Indicated	East Porphyry	33	0.64	0.1	1.66	119	210	105	1750	4
	Skarn	4	0.84	0.34	6.51	7	38	49	936	0.03
Inferred	East Porphyry	46	0.63	0.14	2.49	164	292	208	3692	8
	West Porphyry	45	0.57	0.11	0.88	142	259	161	1284	6
	Outer East Porphyry	0.2	0.55	0.09	1.22	226	1	1	8	0.04
	Outer West Porphyry	0.2	0.57	0.08	1.84	51	1	0.6	14	0.012
	Skarn	3	0.80	0.27	5.68	8	27	30	623	0.03
Measured	Total	28	0.72	0.13	1.74	92	200	116	1551	3
Indicated	Total	37	0.66	0.13	2.24	105	248	154	2686	4
Inferred	Total	95	0.61	0.13	1.83	148	580	399	5621	14
	Total	160	0.64	0.13	1.91	128	1028	669	9858	21

Mineral Resources for the Beutong mineralization have been estimated in conformity with the CIM and JORC (2012) guidelines. In the opinion of Duncan Hackman, the block model resource estimate and resource classification reported herein are a reasonable representation of the copper-gold-silver-molybdenum mineral resources found in the defined area of the Beutong mineralization. Mineral Resources are not Ore Reserves and do not have demonstrated economic viability. The resources reported at 0.3%Cu cut represent the base case estimate as they present the extent of the mineralisation that has reasonable prospect of economic extraction. There is no certainty that all or any part of the Mineral Resource will be converted into Ore Reserves. Computational discrepancies in the table are the result of rounding.

Key points relating to the Beutong 2019 Copper-Gold-Silver-Molybdenum Resource Estimate

- The resource estimate applies to outcropping porphyry and skarn hosted copper-gold-silver-molybdenum mineralisation centred on 229900E, 495400N (WGS84, UTM Zone 47N). The mineralisation has been delineated as three bodies over a strike length of 1500m (towards 080°), across a total width of 700m and to a depth of 600m below surface. The deepest drilling intercepts the porphyry mineralisation at 800m below surface, indicating that the mineralisation persists below the current depth of delineation drilling. Mineralisation is open to the east, west and at depth.
- Porphyry style copper, gold, silver and molybdenum mineralisation is hosted in a fractured and brecciated diorite known locally as the Beutong Porphyry. This porphyry forms the majority of the 3km by 1.5km Beutong Intrusive Complex (Figure 2 and Figure 3). Mineralisation is cut by dioritic and dacitic post mineralisation dykes and a persistent un-mineralised footwall breccia complex that expands across to the hangingwall location in the eastern-most drillhole. Well-developed porphyry mineralisation is located in the eastern half of the deposit. Mineralisation is less-well developed and patchy, both peripheral to the eastern porphyry core and in the western half of the deposit. Skarn mineralisation has been delineated to the north of the porphyry mineralisation at the steeply dipping contact between the Beutong Intrusive Complex and a thick limestone unit.
- 167 diamond drillholes have been drilled at Beutong. The deposit is delineated by 113 of these holes, totalling 33,325m. This drilling was undertaken in four programmes by four separate companies; Highlands Gold Indonesia (HG), Freeport McMoRan Copper & Gold Inc. (FPT), Tigers Copper Singapore No 1 Pte. Ltd. and Emas Mineral Murni (EMM). The eastern porphyry and skarn bodies are mostly delineated by steeply angled holes clustered to form fan-like configurations drilled from multi-use pads along 100m spaced

section lines. The western porphyry is sparsely drilled, with the majority of the mineralisation loosely defined by holes drilled radially from six drill pads. There is one set of twin holes within the high grade volume of the eastern porphyry which shows good continuity of grade at close ranges.

- Sampling of mineralisation is at nominal 2m and 3m lengths. Copper and multi-element assays from 16,493 half-PQ3, half-HQ3 and half-NQ3 diamond core samples populate the Beutong Resource Database. Copper grades are higher for the TCS and EMM samples than the HG and FPT samples, partly due to TCS and EMM targeting the core of the mineralisation and partly due to more appropriate drilling and sampling protocols designed to preserve the integrity of friable mineralised core. Appropriate laboratory sample reduction and analytical protocols were utilised and the analytical quality control programme results confirm that the copper, gold and molybdenum assay values are of acceptable quality to underpin Measured Resources at Beutong (following JORC Guidelines). The lower detection limits for both the HG silver analyses (1ppm) and majority of FPT silver analyses (5ppm) are inappropriately high for the Beutong mineralisation and accordingly, the HG silver assays and the FPT 3 acid digest volumetric determination silver assays were excluded when generating the resource estimate.
- Copper grade is estimated by Ordinary Kriging interpolation methods. Interpolation is guided and constrained by solid TIN (triangulated) boundaries. 6977 copper, gold and molybdenum and 4493 silver, three metre composites inform the grade interpolation within domains. Parent cell estimates (25mE x 25mN x 10mRL) were written to a sub-blocked model. High grade values were restricted from informing block grades at greater than 50m (E and N) and 30m (RL) distance from sample locations. 122 copper composites are affected by this treatment. Thirty-four gold values (two domains) and twenty molybdenum values (one domain) were cut in the estimate. Tonnage factors of 2.37g/cc (low clay altered material) and 2.25g/cc (moderate clay altered material) were utilised, based on 678 dry bulk density measurements taken from mineralised drill core intercepts.
- The Beutong Mineral Resource Estimate was classified utilising the definitions of Resources as described in the JORC Code (2012 Edition). The estimate is assigned a Measured Mineral Resource classification where there is high confidence in the 2019 geological interpretation (geological continuity), where drilling is concentrated and comprises of mostly TCS and EMM holes and where the copper grade is estimated from the more locally focused, first interpolation pass. An Indicated Mineral Resource classification is assigned to a volume surrounding the Measured Resource classification in the porphyry where confidence in the geological continuity is high, however the confidence in the grade interpolation is reduced due to the lower drilling density in this volume (wrt Measured Resources). An Indicated Mineral Resource classification has been assigned to part of the skarn mineralisation based on drill density and confidence in the grade interpolation. Volumes of the resource that do not meet the Measured and Indicated criteria are assigned an Inferred Mineral Resource classification. All resources within the surface oxide zone are assigned an Inferred Mineral Resource classification. Drilling or data density and geological and grade continuity are the key risk inputs in determining the resource classification.

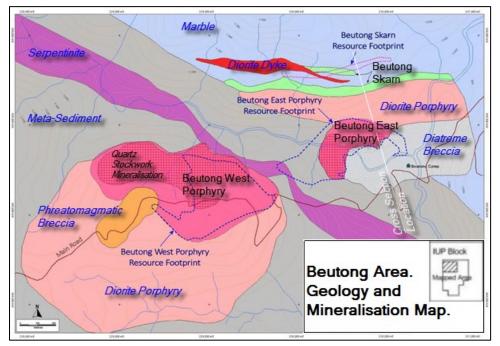


Figure 2: Geological interpretation map of the Beutong Deposit, showing mapped BEP, BWP and Beutong Skarn mineralisation and the 850m RL resource footprint extrapolated to surface.

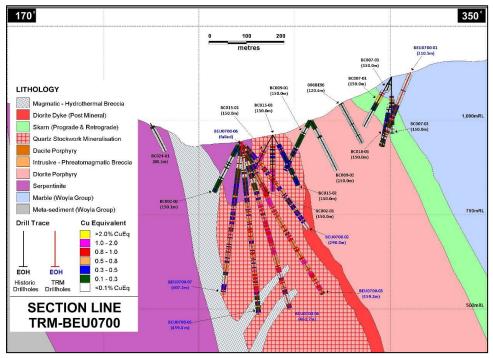


Figure 3: Cross section (BEU0700) through the BEP, showing strong copper-gold-molybdenum mineralization from surface. Note the injection breccias at depth, branching off the magmatic hydrothermal breccia. [CuEq = Cu% + (Mo ppm/10000 * 3.8883) + (Au g/t * 0.5089) + (Ag g/t * 0.0063)].

Contributing experts:

Expert Person/Company	Area of Expertise and Contribution of Expert
Duncan Hackman B.App.Sc. MSc. MAIG.	Exploration and Resource Geologist – 33yrs
Hackman and Associates Pty. Ltd.	experience.
	Data validation and quality analysis, resource
	domaining, block modelling, grade interpolation,
	resource classification.
Stephen Hughes BSc.(Hons),	Copper Gold Exploration Geologist – 20yrs
PT Tigers Realm Consultants Indonesia.	experience.
	Geological interpretation and data validation.
Trent Strickland BSc. (Hons) AusIMM.	Exploration, Mining and Resource Geologist –
Quantitative Group Pty. Ltd.	14yrs experience.
	Kriging neighbourhood analysis and grade
	interpolation design.

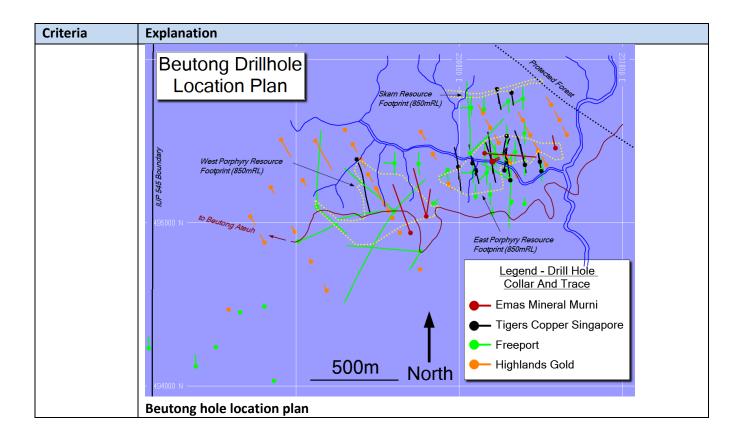
Compliance with the JORC code assessment criteria and Competent Persons Consent

This Mineral Resource has been compiled in accordance with the guidelines defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition).

Duncan Hackman of Hackman & Associates (H&A) is a member of the Australian Institute of Geoscientists and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). Neither Duncan Hackman nor H&A have any material present or contingent interest in the outcomes of the Beutong Cu-Au-Ag-Mo Project Resource Estimate, nor do they have any pecuniary or other interest that could be reasonably regarded as being capable of affecting their independence. H&A's fee for completing this Resource Estimate is based on its normal professional daily rates plus reimbursement of incidental expenses. The payment of the professional fee is not contingent upon the outcome of the estimate.

The opinions and recommendations provided by Duncan Hackman are in response to requests of technical basis by PT Emas Mineral Murni and based on data and information provided by PT Emas Mineral Murni or their agents. Duncan Hackman and H&A therefore accept no liability for commercial decisions or actions resulting from any opinions or recommendations offered within.

Duncan Hackman B.App.Sc., MSc, MAIG Consulting Geologist Hackman & Associates Pty. Ltd.


JORC TABLE 1 checklist of the JORC Code (2012 Edition)

This document covering the technical reporting of procedures, observations and outcomes relating to the generation of the Beutong Cu-Au-Ag-Mo 2019 Resource Estimate follows the guidelines defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition). H&A presents these procedures, observations and outcomes as outlined in the JORC TABLE 1 checklist of the JORC Code (2012 Edition).

A list of abbreviations specific to the Beutong Project Resource Estimate Explanatory Notes is included following the JORC TABLE 1 checklist report.

Criteria	Explanation
Sampling techniques	Drilling details
	167 diamond drillholes have been drilled in and around the Beutong deposit of which 113
	(33,325m) have intercepted significant mineralisation and form the basis of the Beutong
	2019 resource estimate.
	Four drilling programs were undertaken in the evaluation the Beutong Project. These are:
	1. 1996-97: PT Miwah Tambang Emas and Highlands Gold Indonesia (HG); a man-
	portable, NQ drilling program of 35 holes totalling 4,122m (hole nomenclature format: *BE*). Sample lengths nominally 2m.
	2. 2007-08: Freeport McMoRan Copper & Gold Inc. (FPT) and PT Emas Mineral Murni
	(EMM); a shallow and deep PQ, HQ and NQ triple-tube diamond drilling programme
	of 91 holes totalling 23,044m (hole nomenclature format: BC*). Sample lengths nominally 3m.
	3. 2011-14: Tigers Copper Singapore No 1 Pte. Ltd. (TCS) and EMM; a delineation PQ,
	HQ and NQ triple-tube diamond drilling programme of 32 holes totalling 11,745m.
	Two deep diamond holes totalling 2,517m into the Beutong East Porphyry (BEP) and
	Beutong West Porphyry (BWP) to test for depth extensions of mineralisation (hole nomenclature format: BEU*). Sample lengths nominally 3m.
	4. 2018: PT Emas Mineral Murni (EMM); a PQ, HQ and NQ triple-tube diamond drilling
	programme of 7 holes totalling 3,528m. Three holes targeted Measured Resources
	in the BEP mineralisation (estimated in 2014) to obtain metallurgical testwork
	samples. Three holes were targeted at the BWP Inferred Resources (estimated in
	2014) and one on the eastern extent of the BEP. Hole nomenclature format for
	these holes: BEU*. Sample lengths nominally 2m.
	A drillhole collar location and trace plan can be seen in the following figure and hole details
	are tabulated below.

Sampling Techniques and Data

Criteria	Explanation								
		Hi	ghlands (Gold Indon	esia	Drilli	ing		
		Hole	UTM East	UTM North	RL	Az	Dip	TD	
		001BE96	230354	495288.1	917	330	-60	67.6	
		002BE96	230314.7	495365.6	937	330	-60	121	
		003BE96	230245.1	495489.2	976	330	-60	111.7	
		004BE96	230191.5	495581.9	1024	330	-60	121	
		005BE96	230147.3	495670.8	1071	330	-60	121.8	
		006BE96	230390.4	495627.5	1044	330	-60	120.4	
		007BE96	230438.4	495536.7	999	330	-60	120.4	
		008BE96	230486.4	495442.2	975	330	-60	120.3	
		009BE96	230536.2	495353.2	928	330	-60	120.6	
		010BE96	230663.1	495537.8	975	330	-60	120.2	
		011BE96	230615.1	495630.4	996	330	-60	126.6	
		012BE96	230565.3	495721.3	1036	330	-60	120.4	
		013BE96	229541.9	495117.8	1179	0	-90	120.4	
		014BE96	229591.8	495028.8	1181	0	-90	121	
		015BE96	229637.9	494939.8	1175	0	-90	120.2	
		016BE96	229492.1	495208.6	1154	150	-60	120.2	
		017BE96	229442.2	495297.6	1127	150	-60	120.2	
		018BE96	229396.1	495390.3	1098	150	-60	120.8	
		019BE96	229346.3	495479.3	1072	150	-60	112.6	
		020BE97	229298.3	495570.1	1050	150	-60	38.2	
		021BE97	229764.4	495557.4	1025	150	-60	120.1	
		022BE97	229838.2	495422.1	976	150	-60	80	
		023BE97	229934.1		1020	150	-60	90.5	
		024BE97	228586.6	494468.3	1189	0	-90	63	
		025BE97	228805.7	494877.8	1173	330	-60	120.2	
		026BE97	228719	495037.3	1139	150	-60	120	
		027BE97	228844	495216.3	1147	150	-60	88.4	
		028BE97	229041	495260.1	1200	150	-60	87.7	
		029BE97	228991.7	494943.8	1196	330	-60	80	
		030BE97	229090	494761.7	1154	330	-60	38	
		031BE97	229187.8	494583.8	1101	330	-60	79.9	
		101BE97	229565.9	495071.4	1181	330	-60	358	
		102BE97	229759.7	494713.7	1093	330	-60	20	
		103BE97	229117.9	495502.2	1088	150	-50	316	
		104BE97	228906.3	495508.5	1087	150	-50	195	
				•					

	Explanation	ו												
Freeport McMoRan Copper & Gold Inc. Drilling														
	Hole	UTM East	UTM North	RL	Az	Dip	TD	Hole	UTM East	UTM North	RL	Az	Dip	т
	BC001-01	230295.4	495366.5	928.4	330	-60	150	BC015-03	230346.3	495434.9	946.2	0	-90	150
	BC001-02	230295.4	495366.5	928.4	30	-60	150	BC016-01	230222.5	495410.8	923	0	-60	15
	BC001-03	230295.4	495366.5	928.4	180	-60	150	BC016-02	230222.5	495410.8	923	180	-60	15
	BC001-04	230295.4	495366.5	928.4	0	-90	150.3	BC016-03	230222.5	495410.8	923	0	-90	15
	BC002-01	230402.8	495355.3	925.1	0	-60	150	BC017-01	230074.1	495706.3	1058.4	180	-60	96.
	BC002-02	230402.8	495355.3	925.1	180	-60	150.1	BC017-02	230074.1	495706.3	1058.4	0	-60	15
	BC003-01	230506.4	495324.9	943	0	-60	150.2	BC017-03	230074.1	495706.3	1058.4	270	-60	150
	BC003-02	230506.4	495324.9	943	180	-60	150	BC018-01	230390.6	495761.6	1046.4	180	-60	150
	BC004-01	230157	495426	923.8	0	-60	150	BC018-02	230390.6	495761.6	1046.4	0	-60	150
	BC004-02	230157	495426	923.8	180	-60	134.5	BC018-03	230390.6	495761.6	1046.4	240	-60	150
	BC004-03	230157	495426	923.8	90	-60	150.5	BC019-01	229842.4	495116.8	1048.1	45	-60	83.
	BC005-01	229599.8	495070.3	1148.9	270	-60	889.2	BC019-01A	229842.4	495116.8	1048.1	45	-60	78.:
	BC005-02	229599.8	495070.3	1148.9	0	-90	692.2	BC019-01B	229842.4	495116.8	1048.1	45	-60	69.5
	BC005-02A	229599.8	495070.3	1148.9	0	-90	63.4	BC019-02	229842.4	495116.8	1048.1	90	-60	58
	BC005-03	229599.8	495070.3	1148.9	315	-60	901	BC020-01	230101.8	495160.7	1004.4	0	-60	150
	BC005-04	229599.8	495070.3	1148.9	45	-60	654.3	BC020-02	230101.8	495160.7	1004.4	180	-60	45.5
	BC005-05	229599.8	495070.3	1148.9	210	-60	1364.5	BC020-02A	230101.8	495160.7	1004.4	180	-60	48
	BC006-01	230292.6	495530.4	987.2	180	-60	150	BC020-03	230101.8	495160.7	1004.4	0	-90	150
	BC006-02	230292.6	495530.4	987.2	0		150	BC021-01	230190.7	495174.1	975	0	-60	150
	BC007-01	230301.6	495746.3	1102.8			150	BC021-02	230190.7	495174.1	975			143
	BC007-02	230301.6	495746.3	1102.8	0	-90	150	BC022-01	230321.2	495129.3	973.8		-60	49.5
	BC007-03	230301.6	495746.3	1102.8	225		150	BC022-02	230321.2	495129.3	973.8	0	-90	150
	BC008-01	230152.2	495695.8	1078.4	0		150	BC023-01	230202.3	495057.8	1008.5	0		73
	BC008-02	230152.2	495695.8	1078.4	0		150	BC023-02	230202.3	495057.8	1008.5	0		103
	BC009-01	230400.1	495548	980.3			150	BC024-01	230401.7	495114.8	976.1	0		84.1
	BC009-02	230400.1	495548	980.3	0		150	BC025-01	229763.7	494824.6	1100	0		603
	BC010-01	230168.8	495306.5	932.6	0	-60	150	BC025-01	229763.7	494824.6	1100			1081
	BC010-01 BC010-02	230168.8	495306.5	932.6			150	BC025-02	229763.7	494824.6	1100	210	-60	108
	BC010-02	230168.8	495306.5	932.6			150	BC025-03A	229763.7	494824.6	1100			283
	BC010-04 BC011-01	230168.8 230317.3	495306.5 495259.5	932.6			150	BC026-01 BC026-02	229929.5	495322.1 495322.1		180		150
	BC011-01			919.5	0		326.5		229929.5 229751.3		966			150
	BC011-01A	230317.3	495259.5	919.5	220		52.5	BC027-01 BC027-02		495362	975.2	190		150
	BC011-02	230317.3	495259.5	919.5			259.2		229751.3	495362	975.2	190	-60	144.3
	BC011-03	230317.3	495259.5	919.5			259.2	BC028-01	229602.8	495363.6	977.5	180		150
	BC011-03A	230317.3	495259.5	919.5			445.7	BC028-02	229602.8	495363.6	977.5	0	-60	140.8
	BC011-04	230317.3		919.5			619.5	BC028-03	229602.8	495363.6	977.5			150
	BC011-05	230317.3				-90	426.5	BC029-01	230068.6	495425.2	925.7		-70	
	BC012-01	229013.5				-60	655.8	BC029-01A		495425.2	925.7		-70	869
	BC013-01	230083.6		951.8		-60	150	BC029-02	230068.6	495425.2			-60	900
	BC013-02	230083.6					144	BC030-01	228383.9	494119.6		0	-60	150
	BC013-03	230083.6	495307.6	951.8	270	-60	150	BC031-01	228863.8	494029.5	1152.4	0	-90	150
	BC014-01	229126.9	495095.6	1211.8	0	-60	900.2	BC032-01	228094.5	494230.6	1119.9	0	-60	150
	BC014-02	229126.9	495095.6	1211.8	0	-90	125	BC033-01	228806.2	494486.3	1136.2	0	-90	150
	BC014-03	229126.9	495095.6	1211.8	135	-60	596	BC034-01	228656.5	494450.8	1167.7	0	-90	150
	BC015-01	230346.3	495434.9	946.2	180	-60	150	BC035-01	228505.9	494238.3	1137.7	0	-90	150
	BC015-02	230346.3	495434.9	946.2	0	-60	150							

Criteria	Explanation							
	•	Tigers Co	pper Sing	1 Pte.	Ltd.	Drilli	ing	
		Hole	UTM East	UTM	RL		Dip	TD
				North				
		BEU0600-01	230496	495373	945			158.1
		BEU0600-02 BEU0600-03	230504 230496	495317 495373	943	350 350		446.1 232.4
		BEU0700-01	230430	495796		170		210.5
		BEU0700-02	230402.7	495355.2		346		290
		BEU0700-03	230402.7	495355.2	925			459.2
		BEU0700-04	230402.7	495355.2	925	346	-72	461.7
		BEU0700-05	230402.7	495355.2	925	346	-84	459.4
		BEU0700-06	230402.7	495355.2	925	174	-83	163.5
		BEU0700-07	230402.7	495355.2	925	174	-83	407.2
		BEU0700-07	230402.7	495355.2		174		407.2
		BEU0800-01	230295.6	495363.2	929.9			220.5
		BEU0800-02	230295.6		929.9			349.9
		BEU0800-03 BEU0800-04	230295.6 230232	495365.2 495819	929.9			335.9 239.1
		BEU0800-04 BEU0800-05	230232	495819	1137 924	350		259.1
		BEU0800-05	230314	495819	1137			415.1
		BEU0800-07	230232	495819				190.5
		BEU0800-08	230314	495260		350		227.8
		BEU0800-09	230292.6	495530.4	987.1	188	-80	497
		BEU0800D-01	230278	495321.4	936.4	2	-76	924.4
		BEU0900-01	230200	495372	919	350	-74	794.5
		BEU0900-02	230200	495372	919	347	-58	274.4
		BEU0900-03	230200	495372		347		472.4
		BEU0900-04	230200	495372	919			367.1
		BEU0900-05	230200	495372		170		327.3 495.1
		BEU1000-01 BEU1000-02	230104 230104	495315 495315		170 348		495.1
		BEU1000-03	230081	495364		350		219.2
		BEU1000-04	230104	495315		170		337
		BEU1000-04	230104	495315	943	170	-75	337
		BEU1000-05	230081	495364	918	350	-73	400
		BEU1000-05	230081	495364	918	350	-73	400
		BEU1100-01	229995	495342	945	350	-76	506.5
		BEU1100-02	229995	495342		175		414.1
		BEU1100-03	229995	495342		175		404.2
		BEU1700D-01	229371.4	495388.4	1082.1	156	-79	1592.3
			PT Emas M	ineral Mu	rni Drilli	ng		
				UTM				
		HOLE	UTM East	North	RL	_	Dip	
		BEU0500-01	230583.0	495460.0	956.0			
		BEU0900-06	230201.0	495379.0	919.7	-	-	
		BEU0900-07	230202.9	495374.4	919.4		-	
		BEU0900-08	230154.6	495427.7	924.9		-	
		BEU1350-01	229793.0	495035.0				
		BEU1350-02 BEU1450-01	229793.0 229694.0	495035.0 494939.0	1130.0 1158.0			
		BE01430-01	223034.0	494939.0	1136.0	540	-05	750
	Drilling and Core	Sampling	Protoco	ols				
	H&A has not sighted any	protocol o	or proced	dural do	ocume	nta	tior	ı for t
	certified protocol docum	-						
					-	-	-	
	reported by FPT in their 2	2009 techn	lical rep	ort on tl	ne pro	ojec	t "P	IFWN
	Report_2009.pdf".							

Criteria	Explanation
	Of HG work, Freeport states:
	"Drilling in 1996 was limited to a depth of approximately 120 metres because of the limited capacity of the "man portable" drill used to carry out the drilling."
	Of their own work they state:
	"Four drill rigs were employed on the program including a man-portable scout Maxi 150 drill capable of drilling to 150m NQ, and three deep capacity drills: LF70-01, LF70-06, LY-44 capable of drilling between 900 and 1400m depth NQ. A total of 91 drill holes for 23,044m was completed during the 2007 to 2008 program.
	Drill penetration rates were poor overall averaging around 14m per day. Drilling with the shallow Maxi 150 rig was the most efficient. Hole loss was significant especially in the Fault Crush Zone where the combination of broken rock, clay gouge and alteration lead to 13 collapsed hole that could not reach the target depth.
	Drill core samples were collected for all drilling that included PQ, HQ, and NQ core sizes. The core size depends on the ground conditions and depth of the hole. Core was placed in corrugated plastic core trays with lids and transported to the Alue Baru Drill Camp core logging area. In the logging area the core was carefully washed, labeled and photographed. Following photography the core was measured for recovery, RQD, magnetic susceptibility, specific gravity, and PIMA analysis for alteration minerals by geotechnicians. Detailed geological logging was then completed by geologists, and the sample intervals marked out for sampling. Sample intervals of 3m are the standard but a range of between 2.5 to 3.5 meter lengths is acceptable.
	The drill core was split in half lengthwise along the core sample interval using a mechanical splitter. One half was placed into the sample bag for preparation and analysis and the other half returned to the drill core box for storage and future reference."
	20 holes drilled by TCS in 2011 and early 2012 followed the same procedures as those undertaken by Freeport. These being BEU0700-[01-04], BEU0800-[01-09], BEU0900-[01-05], BEU1100-[01,02]
	TCS and EMM adopted revised protocols in March 2012 and the following 26 holes were processed according to the procedures outlined in "DD_Protocols_Photos updated_v1_Final_20120815.docx". These being BEU0500-01, BEU0600-[01-03], BEU0700-[03-05,07], BEU800D-01, BEU900-[04-08], BEU1000-[01-05], BEU1100-[01-03], BEU1350-[01-02], BEU1450-01, BEU1700D-01.

Criteria	Explanation
	Two site visits were undertaken by TCS Operations Manager in 2012 and 2014 to assess adherence to these protocols and, although no formal reports were produced, TCS confirm that site personnel were diligently following protocols when processing core.
	The primary sub-sampling was set at ½ core, split length-wise, for all drilling programmes:
	 There is no record of the HG procedure for collecting samples. FPT document to "Cut the Core with a hammer or Splitter". Personal communication with FPT personnel uncovered that this protocol of mechanically splitting core was undertaken for the more competent segments of core from the 45 holes drilled in 2007. A core saw was used for the 46 holes drilled in 2008, where core was wrapped in plastic film (Glad Wrap) and packing tape prior to cutting. All broken or incompetent segments of core were sampled directly from the tray utilising a blunt wooden instrument. It is highly likely that the mechanical splitting and "halving" with a "chunk of wood" would introduce a bias in favour of the competent material during sampling (as observed by H&A in February 2012 when reviewing TCS coreyard procedures where only the easy to grab pieces of core were collected and friable material was crushed and settled in the base of the tray channels). Prior to March 2012, TCS wrapped the more competent core in plastic film (Glad Wrap) and packing tape prior to cutting with a diamond core saw. H&A observed during a site visit in late February 2012 that wrapping was not undertaken diligently or consistently on the core and hence has lower confidence on the integrity of the primary samples pre March 2012 than for those collected post February 2012 when the core was sampled directly from the core tray (pre March 2012) as per FPT protocols by splitting and collecting the material with a blunt wooden instrument. Post February 2012 TCS (and EMM in 2018) used a sharp steel cleaver and brushes and scoops to split and collect both the competent and incompetent material from crumbly segments of core.
	Risk relating to sampling procedures
	Issues affecting confidence in resource estimate relating to sampling procedures:
	 Sample weights for 3m intervals are nominally 7.5kg for fresh ½ NQ3 core, 13.5kg for fresh ½ HQ3 core and 21kg for fresh ½ PQ3 core. The large primary sample sizes are of concern with regard to maintaining representivity during subsequent sample reduction procedures. A field/sample-reduction duplicate assay programme was implemented in March 2012 (and routinely undertaken) to assess the representivity of analytical samples, the results of which show that there is good repeatability of assays throughout the sample reduction process. The quality of the initial sample from the core tray is a key concern regarding the reliability of assay data and there is a suggestion that the EPT and early TCS
	reliability of assay data and there is a suggestion that the FPT and early TCS procedures were inappropriate for this purpose. The relative weighting of samples

Criteria	Explanation
	prepared by these procedures in estimating grades in the resource model is considered when classifying the resource estimate.
	Core logging
	Holes have been logged at the core shed, on a sample interval basis, to provide geological and mineralisation descriptions utilised in generating the resource domains in this estimate. Exceptions are:
	 All 35 HG holes are missing geology logging. Freeport holes: BC005-02A and BC025-03A and TCS holes BEU0600-03 and BEU0700-06 are
	 missing geology logs. 73 holes are missing up to 25m of geology logging at the beginning of the hole and nine of these holes are missing up to 30m of geology logging from additional intervals.
	• There is no clay logging of all 35 HG drillholes and holes BC011-01A and BC025-03 from the FPT drilling.
	There is no oriented core at Beutong, hence the logged structural data is of limited use.
	H&A did not find any reason to question that the logging is adequate for modelling the Beutong geology and mineralisation at the scale undertaken for the 2019 resource estimate.
Drilling techniques	Four drilling programs were undertaken in the evaluation the Beutong Project. These are detailed in the "Sampling techniques" section (above) and summarised here:
	 1996-97: NQ drilling of 35 holes totalling 4,122m
	 2007-08: PQ, HQ and NQ triple-tube diamond drilling programme of 91 holes totalling 23,044m
	• 2011-14: PQ, HQ and NQ triple-tube diamond drilling programme of 34 holes totalling 14,262m.
	 2018: PQ, HQ and NQ triple-tube diamond drilling programme of 7 holes totalling 3,528m.
Drill sample recovery	Recovery logs for 30% of HG holes and 10% of both FPT and TCS holes are missing from the dataset evaluated as part of the 2019 resource estimate. Although there is a significant percentage of data missing for analyzing the relationship between recovery and grade, the available data is considered sufficient to make an assessment on the overall affect recovery has on grade for each of the drilling programmes. There was no investigation into the accuracy of the core recovery logging.
	Length Core Recovery Data
	Length core recovery shows improvement for each drilling programme [Length core recovery = length of core recovered expressed as a percentage of length of metres drilled]:

Criteria	Explanation
	 Overall recovery for the HG drilling is poor, with only 27% of mineralised intervals (samples) recording recoveries of >90%. 52% of the HG mineralised samples have recorded recoveries of <80%. The recorded data from the FPT drilling programme show marked improvement in recoveries, however, with only 38% of mineralised intervals showing recoveries of >90% and 30% of samples showing recoveries of <80%, the dataset is still considered to be significantly affected by recovery issues. TCS focused on improving and maintaining core recovery during their drilling programme and the results of their effort show, with 60% of the mineralised samples having recoveries of >90% and only 15% of samples showing recoveries of <80%. The TCS dataset is likely to be less impacted by recovery issues than data from the earlier two programmes. The EMM drilling shows good length core recovery with 91% of the mineralised samples recording recoveries of >90% and only 6% of samples recording recoveries of <80%. As with the TCS dataset, this dataset is likely to be less impacted by length recovery issues than data from the EAIM drilling shows good length core recovery with 91% of the mineralised samples recording recoveries of >90% and only 6% of samples recording recoveries of <80%. As with the TCS dataset, this dataset is likely to be less impacted by length recovery issues than data from the earlier the FPT and HG programmes.
	Length Core Recovery vs Grade
	There is a noticeable negative correlation between length core recovery and copper grade, particularly in the TCS dataset. It is likely that the inverse relationship shows up better in the TCS dataset than in the FPT or HG dataset as this data better reflects the relative difficulty in drilling conditions between weakly and strongly mineralised material (as TCS focused strongly on maximizing recoveries) whereas recovery in the earlier programmes may be affected by drilling protocols governed by goals other than maximising recovery (such as maximising drill metres).
	The low percentage of poor recovery intervals in the EMM drilling dataset means that there is insufficient data to determine if there is any correlation between length core recovery and copper grade in this dataset.
	Volume Core Recovery Data
	Evaluation of the core shows that preferential loss or retention of material is occurring in friable and clay rich intervals. The photo below shows an example of clayey material having been washed or scrubbed out of fractures and the core has been affected by partial, volume or interstitial core loss, which in places is extreme and it presents as rubbly sections (and often as measurable length core loss). Length core recovery is measured at 90% for the core in this photo however volume core recovery is significantly lower.

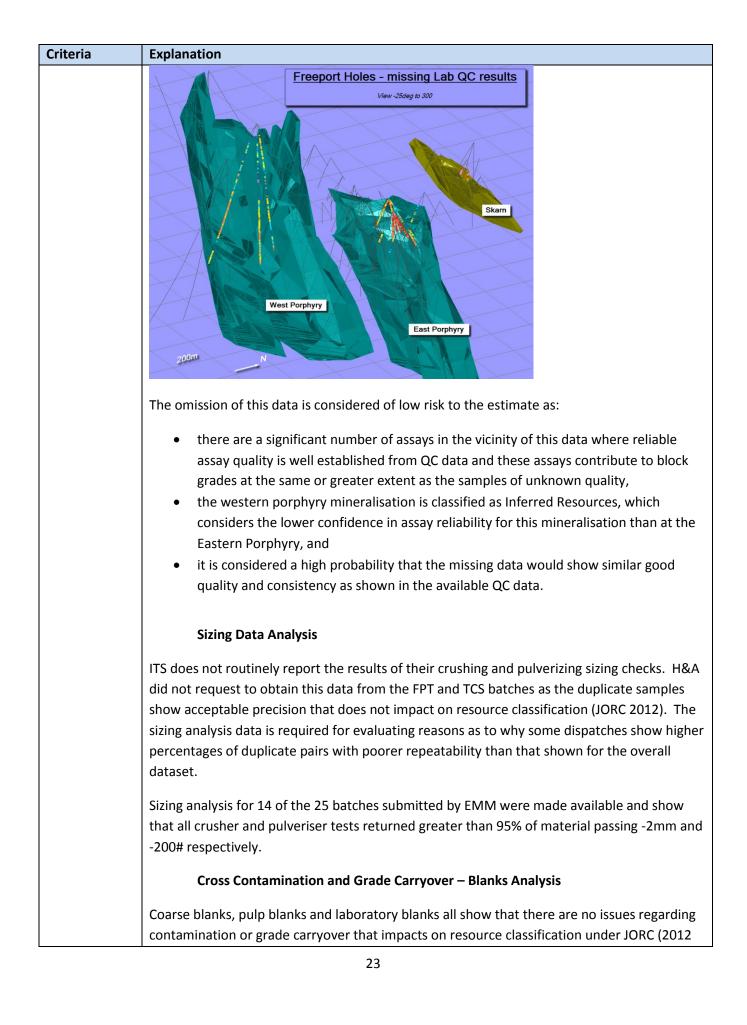
TCS introduced the logging of partial core loss where, if present, loss is logged as trace, moderate or severe. 60% of core from the modelled clay zone show moderate to severe partial core loss which is a higher portion than that for the non-clay zone material (still significantly high at 46%). Partial core loss will impact on the representivity of the samples at Beutong. H&A observed that the handling of core during processing also preferentially favoured the loss of friable material, especially as the core dried out. It is suspected that the partial core loss during handling and sampling has been severe in the past and would have persisted, though significantly reduced, with the improved TCS and EMM handling protocols.

Four of the seven holes drilled by EMM traverse the modelled clay zone and moderate to severe partial loss is observed in this dataset. 73% of the mineralised intervals record moderate volume loss and 9% record severe volume loss.

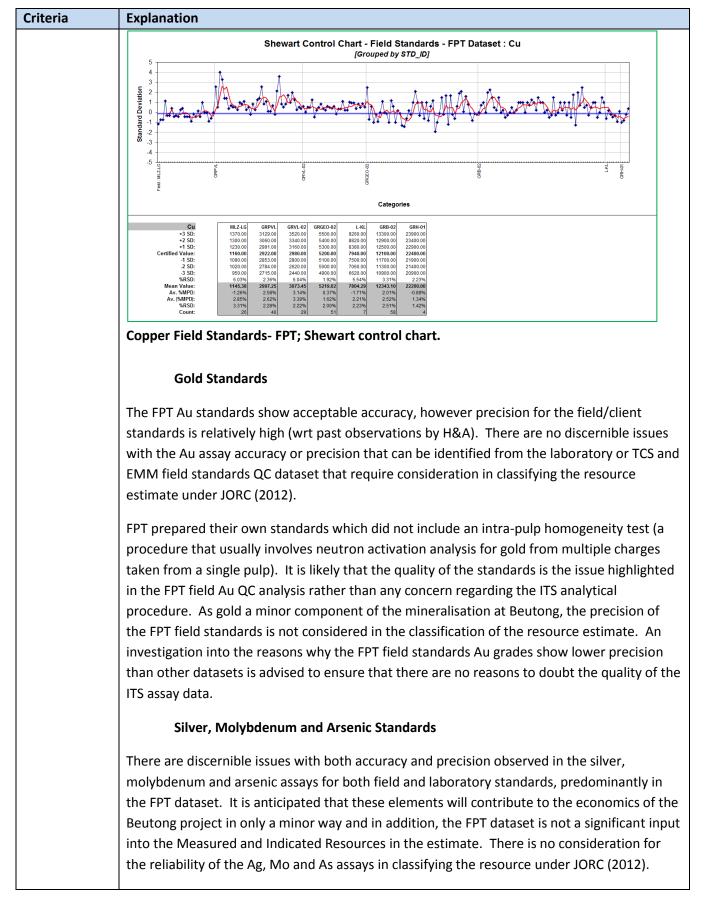
Volume Core Recovery vs Grade

Core recovery at Beutong appears to preferentially favour the more competent material. As yet it is unknown if the preferential recovery (or loss) has biased measurements of the core wrt the in situ values (assays, SGs, geotech, logging etc.). It is quite likely that a portion of the improvement in Cu, Au and Ag grades in the TCS and EMM datasets (over the FPT dataset) can be attributed to better recoveries and core handling procedures employed to obtain more representative samples for assay. If this is the case then loss is resulting in an underestimation of grade at Beutong. It is unlikely that the effect of core loss can be quantified; however an investigation into the preferential loss is required so that the affect

Criteria	Explanation
	can be qualified and the risk to the resource estimate is better understood.
Logging	Core logging
	 Holes were logged at the core shed, on a sample interval basis, to provide geological and mineralisation descriptions utilised in generating the resource domains for the 2019 estimate. Exceptions are: All 35 HG holes are missing geology logging. Freeport holes: BC005-02A and BC025-03A and TCS holes BEU0600-03 and BEU0700-06 are missing geology logs. 73 holes are missing up to 25m of geology logging at the beginning of the hole and nine of these holes are missing up to 30m of geology logging from additional intervals. Clay logging of historical holes was undertaken from core photographs. There is no clay logging of all 35 HG drillholes and holes BC011-01A and BC025-03 from the FPT drilling as photographs from these holes are not available. Core photography exists for FPT, TCS and EMM holes which offer a way of quickly validating logging on an as-required basis.
	There is no oriented core at Beutong, hence the logged structural data is of limited use.
	H&A did not find any reason to question that the logging is adequate for modelling the Beutong geology and mineralisation at the scale undertaken for the 2019 resource estimate.
Sub-sampling techniques	Core Sampling
and sample preparation	There are no surviving records describing how the 1,488 HG drill core samples were collected, prepared and assayed.
	Sampling of the FPT drill core is described in the protocols document "Tatacara Belah Core.doc" which states to:
	 Cut the Core with a hammer or Splitter. Personal communication with FPT personnel uncovered that: the protocol of mechanically splitting core was undertaken for the more competent segments of core from the 45 holes drilled in 2007. A core saw was used for the 46 holes drilled in 2008, where core was wrapped in plastic film (Glad Wrap) and packing tape prior to cutting. All broken or incompetent segments of core were sampled directly from the tray utilising a blunt wooden instrument. [It is highly likely that the mechanical splitting and "halving" with a "chunk of wood" would introduce a bias in favor of the competent material during sampling (as observed by H&A in February 2012 when reviewing TCS coreyard procedures where only the easy to grab pieces of core were collected and friable material was crushed and settled in the base of the tray channels).] TCS drill core sampling changed during their drilling campaign: Prior to March 2012, TCS wrapped the more competent core in plastic film (Glad Wrap) and packing tape prior to cutting with a diamond core saw. H&A observed during a site visit in late February 2012 that wrapping was not undertaken diligently


Explanation										
	•					nfidence of		-	•	
primary samples pre March 2012 than for those collected post February 2012.										
	Sections of crumbling core were sampled directly from the core tray as per FPT protocols by splitting and collecting the material with a blunt wooden instrument.									
		-		-		upgradec				
	•			•		taken and				
			-	-	•	tray using				
	-	-		-		e compete	-			
		•	•			ctice was c			•	
		EMM dril	-		•					
·	0									
Core was sam	oled at th	e followin	g length	5:						
	Core			Number of	Samples			Average	Length	
Company	Diameter	0 to 1m	>1 to 2m	>2 to 3m		>4m Length No	ot Assayed	>4m	Not	
Highlands Gold	NQ	Length	Length 1459	Length 21	Length 5	3	44	Length 8.7	Assayed 20.3	
	PQ			525	39		22		9.4	
Freeport	HQ NQ		1	2374 3382	164 242	1	67	6.0 5.5	21.7 53.5	
	BQ		-	108	34	1/	5	5.5	55.5	
Tigers Copper	PQ	1	4	789	44		19		11.6	
Singapore No 1	HQ NQ	1	205 49	1911 1415	98 104	1	14	6.0 4.2	16.6 3.3	
	PQ		500	6			6		4.3	
Emas Mineral Murni	HQ NQ		894 311	19 8		1	1	6.0	8.5	
-	-	for 3m in	tervals a	ro nomin	allv 7.5k	g for fresh	h ½ NQ3	3 core,	13.5kg	
			-	sh ½ PQ3	core. T	he large p		sample		
of con	cern with	regard to	maintai	sh ½ PQ3 ning repr	s core. T esentivi	he large p ty during s	subsequ	sample ient sa	mple	
of con reduct	cern with ion proce	regard to dures. A	maintai field/sar	sh ½ PQ3 ning repr nple-redu	core. T esentivi uction di	The large p ty during s uplicate as	subsequ ssay pro	sample Ient sa Igramn	mple ne was	
of con reduct impler	cern with ion proce nented in	regard to dures. A March 20	maintai field/sar 012 (and	sh ½ PQ3 ning repr nple-redu routinely	core. T esentivi uction de undert	The large p ty during s uplicate as aken) to a	subsequ ssay pro ssess th	sample lent sa ogramn le repr	mple ne was esentiv	
of con reduct impler of ana	cern with ion proce nented in lytical sar	regard to dures. A March 20 nples, the	maintai field/sar 012 (and results o	sh ½ PQ3 ning repr nple-redu routinely of which s	core. T esentivi uction du undert show the	The large p ty during s uplicate as aken) to a at there is	subsequ ssay pro ssess th	sample lent sa ogramn le repr	mple ne was esentiv	
of con reduct impler of ana assay	cern with ion proce nented in lytical sar results th	regard to dures. A March 20 nples, the roughout	maintai field/sar 012 (and results o the sam	sh ½ PQ3 ning repr nple-redu routinely of which s	core. T resentivi uction du undert show that tion pro	The large p ty during s uplicate as aken) to a at there is cess.	subseques say pro ssess th good re	sample ient sa ogramn ie repr epeata	mple ne was esentiv bility of	
of con reduct impler of ana assay • The qu	cern with ion proce nented in lytical sar results the vality of th	regard to edures. A March 20 nples, the roughout ne initial s	o maintai field/sar D12 (and results o the sample fr	sh ½ PQ3 ning repr nple-redu routinely of which so ole reduc om the c	core. T resentivi uction du undert show that tion pro ore tray	The large p ty during s uplicate as aken) to a at there is cess. is a key co	subseques say pro ssess the good re oncern r	samplo lent sa ogramn le repr epeata regardi	mple ne was esentiv bility of ing the	
of con reduct impler of ana assay • The qu reliabi	cern with ion proce nented in lytical sar results the iality of the lity of ass	regard to dures. A March 20 nples, the roughout ne initial s ay data ar	maintai field/sar 012 (and results of the sample ample fr nd there	sh ½ PQ3 ning repr nple-redu routinely of which ole reduc om the c is a sugg	core. T resentivi uction du undert undert show that tion pro ore tray estion th	The large p ty during s uplicate as aken) to a at there is cess. is a key co nat the FPT	subsequessay pro ssess the good re oncern r F and ea	sample lent sa logramn le repr epeata regardi arly TC	mple ne was esentiv bility o ing the S	
of con reduct impler of ana assay • The qu reliabi	cern with ion proce nented in lytical sar results the iality of the lity of ass	regard to dures. A March 20 nples, the roughout ne initial s ay data ar	maintai field/sar 012 (and results of the sample ample fr nd there	sh ½ PQ3 ning repr nple-redu routinely of which ole reduc om the c is a sugg	core. T resentivi uction du undert undert show that tion pro ore tray estion th	The large p ty during s uplicate as aken) to a at there is cess. is a key co	subsequessay pro ssess the good re oncern r F and ea	sample lent sa logramn le repr epeata regardi arly TC	mple ne was esentiv bility of ing the S	
of con reduct impler of ana assay • The qu reliabi proced	cern with ion proce nented in lytical sar results the iality of the lity of ass dures wer	regard to edures. A March 20 nples, the roughout ne initial s ay data an e inappro	maintai field/sar D12 (and results o the samp ample fr nd there priate fo	sh ½ PQ3 ning repr nple-redu routinely of which s ole reduc om the c is a sugge r this pu	core. T resentivi uction du undert show that tion pro ore tray estion th pose. T	The large p ty during s uplicate as aken) to a at there is cess. is a key co nat the FPT	subsequessay pro ssay pro ssess the good re oncern r f and ea e weigh	sample lent sa gramn le repr epeata regardi arly TC: ting of	mple ne was esentiv bility o ng the S sample	
of con reduct impler of ana assay • The qu reliabi proceo prepa	cern with ion proce nented in lytical sar results the ality of the lity of ass dures wer red by the	regard to edures. A March 20 nples, the roughout ne initial s ay data an e inappro	o maintai field/sar D12 (and results o the sample ample fr nd there priate fo dures in o	sh ½ PQ3 ning repr nple-redu routinely of which s ole reduc om the c is a sugge r this pur estimatin	core. T resentivi uction du undert show the tion pro ore tray estion the pose. T g grades	The large p ty during s uplicate as aken) to a at there is cess. is a key co hat the FPT he relative s in the res	subsequessay pro ssay pro ssess the good re oncern r f and ea e weigh	sample lent sa gramn le repr epeata regardi arly TC: ting of	mple ne was esentiv bility o ng the S sample	
of con reduct impler of ana assay • The qu reliabi proced prepar consid	cern with ion proce nented in lytical sar results the ality of the lity of ass dures wer red by the	regard to edures. A March 20 nples, the roughout ne initial s ay data an e inappro ese proceo en classify	o maintai field/sar D12 (and results o the sample ample fr nd there priate fo dures in o	sh ½ PQ3 ning repr nple-redu routinely of which s ole reduc om the c is a sugge r this pur estimatin	core. T resentivi uction du undert show the tion pro ore tray estion the pose. T g grades	The large p ty during s uplicate as aken) to a at there is cess. is a key co hat the FPT he relative s in the res	subsequessay pro ssay pro ssess the good re oncern r f and ea e weigh	sample lent sa gramn le repr epeata regardi arly TC: ting of	mple ne was esentiv bility o ng the S sample	
of con reduct impler of ana assay • The qu reliabi proced prepar consid Sampl	cern with ion proce nented in lytical sar results the ality of the lity of ass dures wer red by the ered whe e Prepara	regard to dures. A March 20 nples, the roughout ne initial s ay data an e inappro ese proceo en classify ation	maintai field/sar 012 (and results of the sample ample fr ample fr d there priate fo dures in of ing the re	sh ½ PQ3 ning repr nple-redu routinely of which s ole reduc om the c is a sugge r this pur estimatin esource e	core. T resentivi uction du y undert show that tion pro ore tray estion the pose. T g grades estimate	The large p ty during s uplicate as aken) to a at there is cess. is a key co hat the FPT he relative in the res	subseques say pro ssess the good re oncern r and ea e weigh source r	sample lent sa legramn le repr epeata regardi arly TC ting of nodel	mple ne was esentiv bility of ing the S sample is	
of con reduct impler of ana assay • The qu reliabi proced prepar consid Sampl The preparatio	cern with ion proce nented in lytical sar results the lality of the lity of ass dures wer red by the ered whe ered whe erepara	regard to edures. A March 20 nples, the roughout ne initial s ay data an e inappro ese proceo en classify ation ures for th	e maintai field/sar D12 (and results of the sample ample fr nd there priate fo dures in of ing the ro he HG sa	sh ½ PQ3 ning repr nple-redu routinely of which s ole reduc om the c is a sugge r this pur estimatin esource e mples ar	core. T resentivi uction de undert show the tion pro ore tray estion th rpose. T g grades estimate	The large p ty during s uplicate as aken) to a at there is cess. is a key co hat the FPT he relative s in the res	subsequessay pro ssay pro ssess the good re oncern r T and ea e weigh source r	sample lent sa gramn le repr epeata regardi arly TC: ting of nodel tion ar	mple ne was esentiv bility of ing the S sample is	
of con reduct impler of ana assay • The qu reliabi proced prepar consid Sampl The preparatic sampling). Pre	cern with ion proce nented in lytical sar results the ality of the lity of ass dures wer red by the ered whe ered whe ereparation	regard to edures. A March 20 nples, the roughout ne initial s ay data an e inappro ese proceo en classify ation ures for the of the FP ⁻	e maintai field/sar 012 (and the sample the sample fr ample fr d there priate fo dures in e ing the re he HG sa T, TCS an	sh ½ PQ3 ning repr nple-redu routinely of which s ole reduc om the c is a sugge r this pur estimatin esource e mples are d EMM c	s core. T resentivi uction du y undert show the tion pro ore tray estion the pose. T g grades estimate e not rec will samp	The large p ty during s uplicate as aken) to a at there is cess. is a key co hat the FPT he relative in the res corded (co ples was u	subseques say pro ssess the good re oncern r and ea e weigh source r	sample lent sa legramm le repr epeata regardi arly TC ting of nodel tion ar	mple ne was esentiv bility of ing the S sample is nd sub- PT	
of con reduct impler of ana assay • The qu reliabi proced prepar consid Sampl The preparatio	cern with ion proce nented in lytical sar results the lality of the lity of ass dures wer red by the ered whe ered whe e Prepara on proced eparation a Services	regard to edures. A March 20 nples, the roughout ne initial s ay data an e inappro ese proceo en classify ntion ures for th of the FP ⁻ s (ITS) in N	maintai field/sar 012 (and results of the sample ample fr nd there priate fo dures in of the HG sa T, TCS an Jedan. T	sh ½ PQ3 ning repr nple-redu routinely of which s ole reduc om the c is a sugge r this pur estimatin esource e mples are d EMM c he labora	core. T resentivi uction du undert show that tion pro ore tray estion th rpose. T g grades estimate e not rec lrill samp atory fol	The large p ty during s uplicate as aken) to a at there is cess. is a key co hat the FPT he relative s in the res corded (co ples was u lowed flow	subsequessay pro ssay pro ssess the good re oncern r T and ea e weigh source r omminu ndertak w sheet	sample lent sa gramn le repr epeata regardi arly TC: ting of nodel tion ar ken by s whicl	mple ne was esentiv bility of ing the S sample is nd sub- PT h detail	

Criteria	Explanation
	the numbering sequence to be followed and the production of QC duplicate sub-samples. In summary:
	 Samples are receipted, weighed, dried at 105^oC and reweighed at Medan facility. Jaw crushed at -2mm: FPT – sizing test 1:20 samples [no compliance criteria listed], TCS and EMM – sizing test 1:10 samples [95% passing]. Riffle split: FPT – 1kg for pulverizing, retain coarse reject. Prepare second coarse split 1:15 samples. TCS and EMM – 1.5kg for pulverizing, retain coarse reject. Prepare second coarse split 1:25 samples. Pulverise to -75µm: FPT – sizing test 1:20 samples [95% passing], collect 4x250g pulp portions, TCS and EMM – sizing test 1:10 samples [95% passing], collect 2x250g pulp portions, TCS and EMM – sizing test 1:10 samples [95% passing], collect 2x250g pulp portions, Pulps transported to ITS Jakarta, receipted and dried prior to analysis.
	Risk relating to sampling preparation procedures
	H&A notes that sample weights for 3m intervals are nominally 7.5kg for fresh ½ NQ3 core, 13.5kg for fresh ½ HQ3 core and 21kg for fresh ½ PQ3 core. The large primary sample sizes are of concern with regard to maintaining representivity during subsequent sample reduction procedures. A field/sample-reduction duplicate assay programme was implemented in March 2012 (and routinely undertaken) to assess the representivity of analytical samples, the results of which show that there is good repeatability of assay results throughout the sample reduction process and H&A is of the opinion that the reduction procedures, though not ideal, have minimal impact on integrity of subsamples obtained for assaying.
Quality of assay data and laboratory tests	Assay Procedures The assaying procedures for the HG samples are not recorded. All assaying of HG, FPT, TCS and EMM samples was undertaken by PT Intertek Utama Services (ITS) at their Jakarta Laboratory. The following describes the ITS analytical methods:
	 GA31: 1.00g charge; triple acid digest (HCl/HNO₃/HClO₄); AAS detection. Detection ranges: Cu: 20ppm (No designated upper limit) Ag: 5ppm (No designated upper limit) IC01: 0.5g charge; aqua regia digest (3:1 HCl:HNO₃ – most sulphide minerals are readily dissolved, however silicate and refractory mineral will remain largely undigested); ICP-OES detection. Detection range Ag: 0.1ppm to 200ppm IC30: 0.5g charge; triple acid digest (HCl/HNO₃/HClO₄ – preferred ore grade digest


Explanati	on														
tł	nough	not suita	ble for	silica	tes) ·	– vol	ume	etric	dete	ction	. NB	: solu	bility	and	upper
lir	mits ar	re minera	al deper	ndent	t. De	etect	ion F	Rang	es:						
	0	Cu: 2ppi	m to 10(0000	ppm										
	 Ag: 0.5ppm (No designated upper limit) 														
	 Mo: 1ppm (No designated upper limit) 														
	 As: 5ppm (No designated upper limit) 														
• 3/	AH1/O	E101: 0	.5g char	ge; ti	riple	acid	dige	est (H	HCI/⊦	INO ₃ /	/HCl	0 ₄ – pi	eferr	ed o	re grad
di	igest tł	hough no	ot suitak	ole fo	r sili	cate	s) — (Optio	al Er	nissio	on Sp	pectro	сору	dete	ection.
N	IB: solu	ubility ar	าd uppe	r limi	its ar	e mi	nera	al de	bend	ent.	Dete	ection	Rang	es:	
	0	Cu: 2ppi	m to 10	0000	ppm										
	0	Ag: 0.5p	pm (No	desi	gnat	ed u	pper	limi	t)						
	0	Mo: 1pp	om (No d	desig	nate	d up	per l	limit)						
	0	As: 5ppr	n (No d	esign	ated	upp	er li	mit)							
• F/	A30: 3	80g charg	ge; Fire /	Assay	ı; AA	S de	tecti	on.	Dete	ction	ran	ge Au:	0.01	opm	to
30	0ppm														
• X	R01: 1	l0 g pres	sed pell	et XR	F. D	etec	tion	rang	ges:						
	0	Mo: 1pp	om to 10)000p	opm										
	0	As: 5ppr	n to 100)00pp	pm										
• X	R02: P	Pressed P	ellet XP	(F — ο	veri	rang	e ele	emen	ts (a	nalys	ed b	y dilut	ing tł	ne sa	mple
w	/ith sili	ca prior t	to press	ing o	f the	e pell	et).	Dete	ectio	n ran	ge A	s: 10p	pm (No	
d	esignat	ted uppe	er limit)												
The eleme presented					or a	ssays	s inc	lude	d in t	he re	sou	rce est	imate	e are	
Analytica	l Detai	ils - Resc	ource Da	atase	t										
Company		ethod		As Meth				ethod		Cu Met				1ethod	
	A31 IC01	IC30 3AH1	XRU1 XRU2	2 10.30	3AH1		FA30		GA31	IC30 3		Jnkn XR0	1 1030	3AH1	Unkn
HG GA						1488		1488				1488			1488
HG FPT	247 1395		6886 2			1488	6888	1488	6888	4770		1488 688			
HG	247 1395	4772 1739	6886 2	2 4772	1739	1488	6888 4772 1739	1488	6888	4772	1739		8 4772		

Criteria	Explanation
	is considered low and does not impact on the classification of the resource estimate. The missing FPT QC data requires locating and including into the evaluation of assay reliability in future resource estimates. However if this is not possible, the omission of this data is considered of low risk to the estimate as it is considered a high probability that the missing data would show similar good quality and consistency as shown in the available QC data.
	FPT, TCS and EMM programmes. It is unknown if FPT undertook any laboratory audits. Findings from a H&A review in 2012 of the ITS facilities and practices are included in the "Audits or Reviews" section (below).
	Standard Insertion Rates
	Both FPT and early TCS protocols (pre March 2012) submitted small batches of samples, typically 20-40 in number and included one or two client standards in each batch. This insertion rate is inappropriate for assessing data reliability of individual batches and can only be confidently used in assessing the long-term consistency of the laboratory's performance. Following March 2012 TCS increased the number of samples per batch to better fit with ITS's ideal batch sizes of 150 to 200 samples and increased the number of QC samples to typically between 6 and 8 standards per batch (suitable for assessing both the short and long term laboratory performance). Inclusion of standards in FPT and TCS batches is incomplete, with 20 of 259 batches missing Copper QC assays, 60 missing Au QC assays, 246 missing Ag QC assays and 198 missing Mo QC assays.
	EMM batch size and standards inclusion rates followed those of TCS post March 2012 (between 1:14 and 1:20 due to a decrease in batch sizes from those employed by TCS). The first four of 25 batches submitted by EMM for assay contained standards with certified values for Au, Cu and Mo, following which appropriate standards were added that included Ag in the certified values list.
	ITS inserted laboratory standards into the analytical stream at the rate of 1:15 samples.
	Blank Insertion Rates
	FPT dispatches included one coarse blank sample. The pre-March 2012 TCS batches typically contain one or two coarse blank samples which was increased to a rate of 1:25 samples post-March 2012. These were selectively inserted to be concentrated within mineralised intervals. All coarse blanks are identified as being made from limestone.
	TCS inserted coarse blanks and certified pulp blanks into dispatches post-March 2012 at the rates of 1:25 samples. The pulp blanks follow the standards in the analytical sequence.
	EMM inserted coarse blanks and certified pulp blanks into dispatches at the rates of 1:50 samples. The pulp blanks follow the standards in the analytical sequence.
	ITS inserted laboratory blanks at the rate of 1:15 samples into the FPT analytical stream

Criteria	Explanation
	which was decreased to the rate of 1:25 samples for the TCS and EMM analytical work.
	20 of 259 batches were submitted without either client coarse blanks or pulp blanks.
	Duplicates and Repeat Insertion Rates
	FPT directed ITS to generate a -2mm coarse crush duplicate at the rate of 1:15 samples and insert these samples into the analytical stream immediately following the original samples. This appeared to be a late amendment to the laboratory protocols, possibly post 2 nd March 2007 (as indicated on the sample flowsheet) and was not consistently undertaken. 109 of the 217 FPT batches contain crusher duplicate assays.
	No crusher duplicates were prepared for TCS batches pre-March 2012. Post-March 2012 - 2mm coarse crush duplicates were included nominally at a rate of 1:25 samples (as directed in protocols), however rates vary from 1:10 to 1:60 samples.
	Crusher duplicates were included in the EMM batches at a nominal rate of 1:25 samples (as directed in protocols), however rates vary from 1:20 to 1:50 samples.
	Pulp duplicates were inserted into the sampling stream by ITS. This was undertaken irregularly for the FPT work, with only 21 batches containing 1 or 2 duplicates and routinely for the TCS and EMM work at a rate of 1:15 samples.
	Laboratory repeat assays were undertaken at a nominal rate of 1:15 samples however most batches show higher insertion rates as a result of selective re-assaying during the laboratory QC process.
	Missing Laboratory QC results
	ITS reported the client data and the laboratory QC results in separate files for the FPT programme. By detaching the lab QC results from the client results, ITS created a system that allowed related QC results to be lost from their system. Of the 217 client data reports re-issued by ITS for the FPT programme only 164 Lab QC reports were re-issued. Details of the missing QC data for batches are:
	 53 DPOs namely from ACH-25 and EMM-0002 to EMM-0060 excluding: EMM-0055 (QC supplied), and EMMA 0022, EMMA 0027, EMMA 0045, EMMA 0048, EMMA 0053, EMMA 0053,
	 EMM-0032, EMM-0037, EMM-0045, EMM-0048, EMM-0053, EMM-0058 (DPO's not used for drill core samples) 18 Holes affected; BC001-[01-04], BC002-[01,02], BC003-[01,02], BC004-[01-03], BC005-[01-03], BC006-[01,02], BC007-[01,02] 1,338 samples affected. The grades in the Western Porphyry (Inferred classification, JORC 2012) and upper
	central area of the Eastern Porphyry (Measured classification, JORC 2012) are informed by these holes. These are depicted in the following figure:

 into batch EMM-0196. This blank indicates that there is an issue with contamination or carryover in this batch which contains assays for samples from 108m to 225m in hole BC02 01. This mineralisation is modelled as being part of the Inferred Outer East Porphyry Resource. Analytical Accuracy and Precision – Standards Analysis Sixty-three different certified standards were utilised over the years by FPT, TCS and ITS, some of which employed by ITS are too low in value to be of use in assessing assay data quality. Only those standards with certified values for target elements that are within the significant ranges (wrt mineralisation and the laboratory method lower detection limits) were used in assessing the analytical accuracy and precision of the assays used in the resource estimation. The QC was assessed through performance summary plots and shewart control charts (spl by worker) as per the examples presented below. Observations from the Certified Standards Evaluation for each element follows: Copper Standards There are no discernible issues with the Cu assay accuracy or precision that can be identified 	Explanation
Sixty-three different certified standards were utilised over the years by FPT, TCS and ITS, some of which employed by ITS are too low in value to be of use in assessing assay data quality. Only those standards with certified values for target elements that are within the significant ranges (wrt mineralisation and the laboratory method lower detection limits) were used in assessing the analytical accuracy and precision of the assays used in the resource estimation. The QC was assessed through performance summary plots and shewart control charts (spid by worker) as per the examples presented below. Observations from the Certified Standards Evaluation for each element follows: Copper Standards There are no discernible issues with the Cu assay accuracy or precision that can be identifif from the standards QC dataset that require consideration in classifying the resource estimunder JORC (2012).	carryover in this batch which contains assays for samples from 108m to 225m in hole BC02 01. This mineralisation is modelled as being part of the Inferred Outer East Porphyry
some of which employed by ITS are too low in value to be of use in assessing assay data quality. Only those standards with certified values for target elements that are within the significant ranges (wrt mineralisation and the laboratory method lower detection limits) were used in assessing the analytical accuracy and precision of the assays used in the resource estimation. The QC was assessed through performance summary plots and shewart control charts (spi by worker) as per the examples presented below. Observations from the Certified Standards Evaluation for each element follows: Copper Standards There are no discernible issues with the Cu assay accuracy or precision that can be identifif from the standards QC dataset that require consideration in classifying the resource estim under JORC (2012). $\boxed{\begin{array}{c} Cu : Field Standards Performance Summary. FPT Drilling Database.\boxed{\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Analytical Accuracy and Precision – Standards Analysis
by worker) as per the examples presented below. Observations from the Certified Standards Evaluation for each element follows: Copper Standards There are no discernible issues with the Cu assay accuracy or precision that can be identifi from the standards QC dataset that require consideration in classifying the resource estim under JORC (2012).	some of which employed by ITS are too low in value to be of use in assessing assay data quality. Only those standards with certified values for target elements that are within the significant ranges (wrt mineralisation and the laboratory method lower detection limits) were used in assessing the analytical accuracy and precision of the assays used in the resource estimation.
Copper Standards There are no discernible issues with the Cu assay accuracy or precision that can be identified from the standards QC dataset that require consideration in classifying the resource estimated under JORC (2012). Cu : Field Standards Performance Summary. FPT Drilling Database. Image: Standard of the standards of the standard of the st	
There are no discernible issues with the Cu assay accuracy or precision that can be identified from the standards QC dataset that require consideration in classifying the resource estimated under JORC (2012).	Observations from the Certified Standards Evaluation for each element follows:
There are no discernible issues with the Cu assay accuracy or precision that can be identified from the standards QC dataset that require consideration in classifying the resource estimated under JORC (2012).	Copper Standards
Provide the set of the	There are no discernible issues with the Cu assay accuracy or precision that can be identified from the standards QC dataset that require consideration in classifying the resource estimate under JORC (2012).
Press, 25 Count Press, 25 Count Press, 26 Count Press, 27 Count Press, 26 Count Press, 26 Count Press, 27 Count Press, 26 Count Press, 27 Count Press, 27 Count Press, 27 Count Press, 27 Count Press, 27 Count Press, 27 Count Press, 28 Count Press, 27 Count Press, 27 Count Press, 27 Count Press,	Cu : Field Standards Performance Summary. FPT Drilling Database.
Standard ID (Expected Cu Grade ppm)	
	1,145 Meas, 26 (1,145 Meas, 26 (2,997 Meas, 29 (5,219 Meas, 51 (7,804 Meas, 51 (12,343 Meas, 51 (22,200 Meas, 51 (

Criteria	Explanation
	Duplicate and Repeat Sample Analysis
	An example of the duplicate and repeat samples analysis is shown in the following figure (below). The FPT data shows that total variance for Cu assays introduced during sample preparation is 5%AAMPD (%Av. Mean Paired Difference) for crushing, splitting, pulverizing, pulp-sampling and taking the assay charge. The total variance for the TCS and EMM assays is shown to be 3%AAMPD. The variance measured at both the pulp and assay charge generation is 2%AAMPD for the FPT, TCS and EMM datasets, indicating that the pulverized material is well homogenized at both small and large scales of support. Similar analyses of the duplicate and repeat Au, Ag, Mo and As assay datasets show acceptable low levels of variance introduced during sample preparation. There are no discernible issues identifiable from any of the -2mm coarse crush duplicate, pulp duplicate or repeat assay datasets from the FPT, TCS and EMM analytical programmes that impact on the classification of resources at Beutong (under JORC 2012). Batches that show poor repeatability (high %MPD) of individual duplicate pairs have been identified and this information is supplied to EMM to be used as a guide in selecting samples for submission to reference laboratories in any future analytical programmes or resource
	update.
	Cu: Beutong Tigers Realm Cooper OC Data : Put Duplicates (second put from -75micron material - assayed in same Lab da so riginal sample). Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sumany Statistical Sum Sumany Statistical Sum Statistical Sumany Statistical Sumany Statistical

Criteria	Explanation
	Assay Quality and Reliability Considerations
	It is of interest that in most cases the laboratory standards data shows significantly better accuracy and precision than the field submitted standards. This observation requires further investigation and highlights the necessity to submit a batch of samples to reference laboratories (including QC samples). The overall acceptable standard of the current QC data suggests that reference laboratory results should correlate well with the original ITS assays, however there is always a chance that they will not (possibly uncovering currently non-detectable issues) and this important step in the QC procedure is required for any future resource update.
Verification of sampling and assaying	There are no independent checks of drilling results, sample assays and only one set of twin holes at Beutong, drilled by EMM into high grade mineralisation. The twin holes in this pair report comparable grades for the target elements.
	Data Handling
	H&A is not aware of any documented management procedures relating to the HG data and has no comment on the provenance of this data.
	H&A understands that the FPT, TCS and EMM drill core data was recorded on paper logging sheets and subsequently transferred into excel spreadsheets formatted identically to the paper copies. The digital entries were then collated into tables and entered into an Access [™] database. Comma separated value assay results files were received from ITS and merged into the Access [™] database utilising the sample number as the key field. Laboratory QC assay results are also stored in the Access [™] database.
	In March 2012 TCS instigated a project to re-organize and review all historic data and information and correct/validate the previous workers drilling data from source files uncovered during this work. In parallel to this, TCS's personnel constructed and corrected data within a Vulcan [™] database while undertaking evaluation of the drilling and the geological interpretation of the Beutong deposit. The TCS Access [™] database (now EMM) is the official dataset for the project and the Vulcan [™] dataset is an alternative that has been utilised as a check dataset for validating the resource estimation data.
	Data audits
	There are no recorded audits of the drilling database. The FPT, TCS and EMM drilling datasets were validated by H&A prior to undertaking the 2019 resource estimate.
	Database Verification
	The provenance of the historic data compiled in the EMM database is largely unknown (HG and FPT data). The risks associated with unknown data history are significant enough to be a consideration in classifying a resource estimate under the JORC Guidelines. To alleviate this risk the entire FPT, TCS and EMM assay dataset was reconstructed from report files provided

Criteria	Explanation
	by ITS (excluding assays where files could not be located, affecting holes BC001-01, part- BC001-02, part-BC005-04, part- BC012-01, part- BC025-02 and BC028-02). ITS could not locate the report files for the HG assays. Cross-checking of the two datasets (EMM database and the recompiled dataset) showed that 632 FPT records were incorrect within the EMM database (mostly due to incomplete loading of elements and containing records of initial/preliminary assay releases that were reissued as final at a later date by ITS). The recompiled data assay data was utilised for the resource estimate.
	The 1ppm lower detection limit for the HG silver assays sits within the expected grade range at Beutong as does the 5ppm lower detection limit for method GA31 undertaken by FPT. All Ag assays for the HG dataset were excluded from the resource dataset. GA31 FPT silver assays less than the detection limit were removed from the resource estimate and the 1:5 inserted IC01 silver assays comprise the majority of Ag values for the FPT holes. Comparison of Assay Datasets
	The FPT and TCS assays and TCS and EMM assays were compared to assess if combining these datasets was appropriate for undertaking the resource estimate. The TCS and EMM assays are comparable when assessed locally (within 100m of EMM holes). No comparison was made with the earlier HG dataset as these holes have limited input into the grade interpolation at Beutong.
	The FPT copper, gold and silver assay populations within the mineralised domains (porphyry, outer-porphyry and skarn) are negatively skewed compared to the TCS copper gold and silver assay populations (Cu and Au comparisons presented below). This trend is also observed when lower-cuts are applied (>5000ppm and >10000ppm Cu subsets) and when the assays from holes on section lines 800 and 900 are assessed, representing a restricted volume where mineralisation is likely to be comparable (>230125E and <230350E, >495250N and <495450N, >790RL; including holes BEU0800-[01-03], BEU0800D-01, BEU0900-[01-05], BC001-[02-04], BC004-[01-03], BC010-[01-04], BC011-[01-03], BC015-[01,03], BC016-[01-03]).
	The molybdenum and arsenic assays are comparable between the FPT and TCS datasets.
	Drill Project Comparison. Cu assays. FPT and TRM Datasets from Mineralised Domains.
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

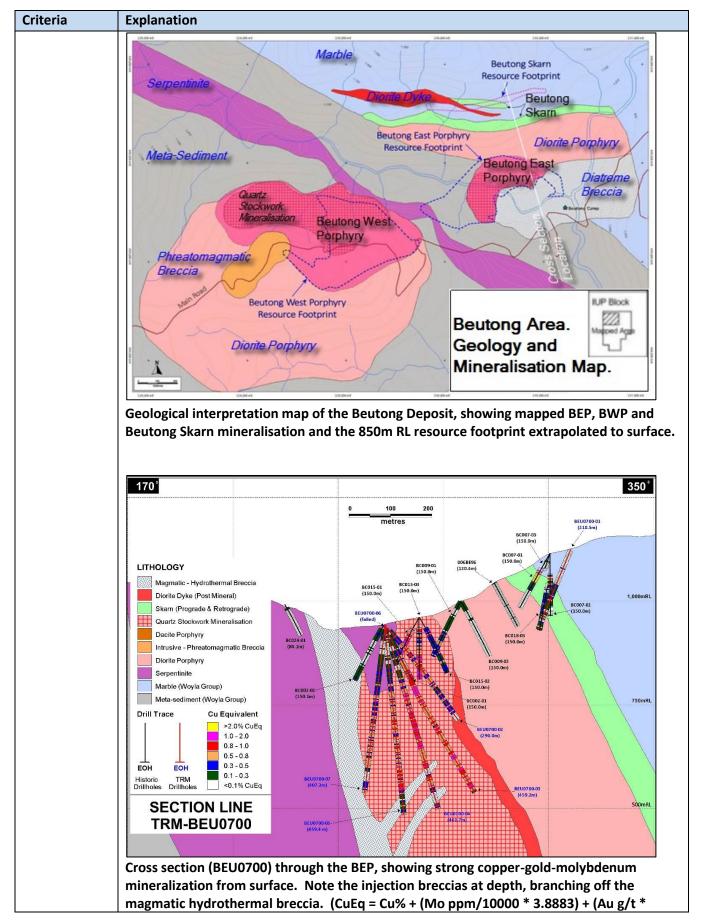
Criteria	Explanation
	 TCS have focused on obtaining good core recovery in their drilling. Core handling and sampling procedures were improved for part of the TCS programme to be more suitable in maintaining the integrity of clay-rich and friable core. The friable core is common in the upper portions of the Eastern Porphyry, a volume where FPT and TCS holes are focused.
	H&A considers that all of these factors contribute to improvement in sample and assay representivity in the TCS programme and that the relative bias affects the reliability of FPT data in informing the resource estimate.
Location of data	All work is undertaken and recorded in WGS84, UTM Zone 47N.
	Drill Collar Locations and Topographic Control
	Drillhole collar locations, orientations and total length are tabulated at the "Sampling Techniques" section (above).
	The reliability of the collar locations for FPT and TCS drilled holes is well established with collars being surveyed by differential GPS methods. The seven EMM holes are located by standard GPS pickup. The FPT drill hole pick-up survey programmes are documented in two reports by contract surveyors PT Millar Bahroeny. H&A confirmed the location of TCS holes with site personnel during a site visit and again when resource models were reviewed and approved by the TCS senior geology staff. Details of how collar locations for the HG holes were determined by the original workers are not known. TCS crosschecked tabulated collar coordinates for the HG holes against geo-referenced historical maps and confirmed that coordinates within the database correlate with the plotted collars.
	Inconsistencies exist between the supplied topographic models (a compass and tape derived DTM and the ASTER Global Digital Elevation Model). A topographic surface was generated for use in the resource estimate that utilised the drillhole collars and a perimeter rectangle draped on the SRTM surface at >400m from the modelled mineralisation.
	H&A considers that the drillhole collar locations are known to an acceptable standard and that there is a high degree of confidence in their internal relationship.
	Downhole Surveys
	The HG and FPT downhole survey data was collected using a conventional Eastman single shot camera, and the TCS and EMM survey data was collected using a digital Reflex single shot camera. The magnetic declination at Beutong is currently approximately 1 [°] west. EMM does not adjust magnetic survey data to account for this small declination and H&A followed suite in undertaking the resource estimate.
	Confidence in the accuracy of drillhole traces plotted for the HG and FPT holes is low as downhole surveys were either not taken (all HG holes and 15 FPT holes) or taken with long intervening intervals (hole traces for BC001-01, BC017-01, BC023-02, BC027-02, BC028-02

Criteria	Explanation							
	drilled by FPT are lo	ocated with s	urveys taken at >100m	downhole intervals).				
	TCS holes were surveyed at 40-50m intervals and EMM holes at 25m. Subsequently the confidence in the hole trace and sample locations for these datasets is high.							
	dip changes (holes i number of severe d obvious in BEU0800 dip with depth, initi overall from 250m 250m). The genera drilling suggests tha	tend to drop eviations in)-09). Hole E ially declinat depth (howe lly predictab at the risk to be low and th	with depth). Holes BE and around logged clay BUE1350-02 drilled by E ion decreases (hole tra ever two periods of dec le nature of hole locati a resource estimate in hat sample location relia	eviation in azimuths and very minor U0700-03 and BEU0800-09 show a v zones with poor core recovery (most EMM shows a reversal in the change in ce dropping) and then increases lination decrease occurs beyond ons shown in the TCS and EMM using data from the poorly located HG ability is not a key consideration in				
	Downhole surveys from the database were crosschecked against the collar survey details and the separately supplied Vulcan [™] survey dataset and discrepancies resolved with the assistance of TCS personnel. Significant deviations in azimuth and dip measurements were investigated (± 5 degrees deviation between consecutive surveys) in conjunction with logging information and the drillhole trace determined by utilising adjusted azimuths and dips to account for severe, unexplained and most likely erroneous surveys (23 in total).							
		-	-	desurvey method. The final downhole 6 validated survey data records.				
Data spacing and distribution	these holes, totallin delineated by steep multi-use pads alon with the majority o pads. A plan showi (above) and the foll	ng 33,325m. Aly angled ho Ig 100m space f the mineral Ing drill hole Iowing table	The eastern porphyry a les clustered to form fa ced section lines. The v lisation loosely defined traces is included in the gives an indication of t	The deposit is delineated by 113 of and skarn bodies are mostly an-like configurations, drilled from vestern porphyry is sparsely drilled, by holes drilled radially from six drill e "Sampling techniques" section he average drill spacing throughout e Classification (JORC 2012).				
	Mineralisation	Resource Classification	Average Drill Spacing (m) [Assumes uniform DH distribution]					
	East Porphyry	Measured Indicated Inferred	44 69 301					
	Outer East Porphyry	Inferred	59					
	West Porphyry	Inferred	224					
	Outer West Porphyry	Inferred Indicated	97					
	Skarn	Indicated	48					
	Drill density and ori	entation in t	he eastern porphyry ar	nd skarn mineralisation is sufficient to				

Criteria	Explanation
	delineate geological and grade continuity at confidence levels reflected in the JORC classifications assigned to the 2019 resources (Measured, Indicated and Inferred for the eastern porphyry; Indicated and Inferred for the skarn mineralisation). The drill pattern in the western porphyry is such that geological and grade continuity can only be assumed and therefor no resources in this mineralisation can be considered for Measured or Indicated Resource classification under the JORC Code (2012). Compositing for resource estimation was undertaken at 3m intervals (refer to "Estimation and modelling techniques" section for details).
Orientation of data in relation to geological structure	There is no discernible relationship between assay grades and drillhole orientations. EMM personnel and H&A have not recognized any persistent prevailing veining or micro/meso-scale mineralizing orientations at Beutong. Furthermore there is no oriented core and limited logging data to effectively investigate this relationship through data interrogation methods. H&A considers that the majority of mineralised drill intercept lengths approximate true thicknesses (resulting in minimal impact on experimental variography) and that the modelling of the deposit in generating a resource estimate correctly accounts for any volume (tonnage) considerations. H&A considered that any likely grade uncertainty relating to primary sampling orientations (eg. vein to core axis angles) is accounted for through classification of the resource estimate. With the mineralisation being both of porphyry and skarn style and of significant scale, and at the current sampling densities (a consideration in classifying the resource estimate), H&A considers that any local unfavorable primary sampling orientation would not materially
Sample security	 impact on the global grade of the Measured and Indicated Resources at Beutong. Any risk to the estimate associated with the primary sampling orientation within the less densely drilled volumes of mineralisation is accounted for through the low confidence Inferred Resource Classification (JORC 2012) applied to these volumes. Sample security is not known for the HG programme. Although not audited for the FPT, TCS and EMM programmes, sample security relies on the diligence of personnel at the site processing facility and the use of numbered security zip ties between dispatching and receipting at the ITS sample preparation laboratory (these allow personnel to determine if samples were opened).
	H&A, during a February 2012 site visit, did not observe any on-site facility or procedures suggesting subversive activity and the use of security tags and having company personnel accompany the couriers that delivered samples to the ITS preparation laboratory gives confidence that samples would have been received at the laboratory in the same state as they were when dispatched. H&A cannot rule out the possibility of tampering (as samples are dispatched in calico bags, packaged inside poly-weave bags) however, as the assay results for both core and quality control samples are as expected H&A considers the integrity

Criteria	Explanation
	of samples has been maintained throughout their handling, preparation and assaying.
Audits or reviews	Data
	H&A undertook a rebuild and audit of the assay database prior to resource estimation (refer to "Verification of sampling and assaying" section above).
	Core photographs were utilised for checking geological and mineralisation logs during the TCS and EMM geological interpretation phase of the resource modelling.
	Core Yard
	Duncan Hackman from Hackman and Associates Pty Ltd (H&A) undertook a site inspection of the Beutong Project, the TCS core processing and storage facilities (both now EMM facilities) and the PT Intertek Utama Services sample processing and laboratory facilities from February 27, 2012 to March 3, 2012. The primary reason for visiting the prospect, core and laboratory facilities was to locate and confirm evidence of exploration activities reported by TCS and earlier workers, to observe the drilling and sampling procedures being conducted by TCS and to observe and confirm copper mineralisation in core and outcrop. H&A also assessed and modified core handling and sampling protocols employed by TCS to improve their suitability for preserving core and sample integrity, accounting for site and prospect specific conditions and features, so that greater reliability can be placed on data and information derived from the material. A protocols document was produced from this work and the updated protocols were also employed for the 2018 EMM programme.
	H&A did not uncover any reason to question the exploration activities undertaken in exploring and evaluating the Beutong prospect nor to question the presence of copper mineralisation of the tenor and styles reported by EMM and previous workers.
	Two site visits were undertaken by TCS Operations Manager to assess adherence to core yard protocols and, although no formal reports were produced, TCS confirm that site personnel were diligently following protocols when processing core. One management visit was undertaken during the 2018 drill programme and EMM confirms that personnel were diligently following protocols when processing core.
	Laboratory
	Intertek Utama Services, Jakarta Laboratory is currently ISO (International Standard) and KAN (Indonesian Standard) accredited, ISO17025 and LP-130-IDN respectively. H&A has received copies of the KAN certificates confirming accreditation for the Jakarta Laboratory from May 2, 2006 to present. Follow-up request for proof of certification for earlier times has not been successful and therefor H&A cannot comment on the accreditation status covering the entire period when samples were submitted to the ITS Medan and Jakarta facilities.
	It is unknown if FPT undertook any laboratory audits and the following observations on the Laboratory can only be applied to the TCS programme. TCS requested that H&A undertake a

Criteria	Explanation
	review of the ITS facilities in February 2012 to assess the laboratory's suitability for analyzing Beutong samples and to assist in designing appropriate coreyard and laboratory protocols to do so. H&A observed:
	 The ITS sample preparation facility in Medan: Was adequately equipped, except for ovens, which were of older convection styles and possibly not best suited for drying clayey samples. The staff were trained in and diligently documenting procedures. Was not in operation on the two days when visits were made. The ITS Jakarta Fire Assay facility: Was adequately equipped and set-out for handling the workload observed during the visit. The staff were trained in and diligently documenting procedures. Can complete four firings in an 8hr shift. Can processes 45 client samples in a firing, leading H&A to recommend that batches be submitted at multiples of 45, with 180 being the optimum size. The ITS Jakarta Wet-Lab:
	 The firs Jakarta Wet-Lab: The work place was adequately equipped and set-out. Had an acceptable level of hygiene. Readily accessible work flow-sheets and diligently completed monitoring paperwork.
	 Analysis: The facility was clean and well kept. Maintenance and service records of analytical instruments readily available for inspection. Calibration liquors stored and handled with adequate care. Paperwork adequate and diligently completed. Quality Control:
	 Records of internal and external calibration checks appropriate and diligently completed. QC process adequate for Beutong assays. No reporting of re-assay and check assay Lab job numbers with results. Reporting: Adequate, however could be improved by reporting sizing information and sequence numbers and by reporting both client and laboratory (QC) results in the one file.
	H&A is of the opinion that it would be highly unlikely that the Beutong samples would be compromised by being prepared and assayed at ITS and, in the event that QC results indicate a shortcoming in quality assurance or a breakdown in adherence to protocols that ITS has the right paperwork, being diligently completed, to undertake a thorough investigation to identify any causal issues. The thoroughness observed in designing and recording of protocols and work flow-sheets suggests that ITS has the commitment and tenacity to undertake the necessary changes to rectify any issues identified so as to minimize the


Criteria	Explanation
	likelihood of sample quality/reliability breakdown reoccurring.

Reporting of Exploration Results

Criteria	Explanation
Mineral	Tenure
tenement and land tenure status	The Beutong project area is subject to a 10,000 hectare IUP Production license held 100% by PT Emas Mineral Murni (EMM, license no. 66 /1/IUP/PMA/2017). EMM has two shareholders. It is 80% owned by the Singaporean domiciled Beutong Resources Pte. Ltd. (BRPL) and 20% by the Indonesian domiciled PT Media Mining Resources (MMR). BRPL is in turn 100% owned by Tigers Copper Singapore No 1 Pte. Ltd. (TCS) which in turn is 100% owned by Asiamet Resources Limited (ARS).
	The Beutong IUP is currently within its second year of a 20 year initial tenure period which, if kept in good standing, may be extended for a further 2 x 10 years, taking the ultimate expiry date to the 18 th December 2057.
	The EMM IUP no. 66 /1/IUP/PMA/2017 is subjected to the prevailing Indonesian Government royalty rates which are currently set at 4% for copper production and 3.75% for gold production. There are no signed agreements with any other company or individual with regards to royalty payments, back in rights, payments or any other agreements and encumbrances regarding the EMM IUP.
	Forestry
	There are 2 types of forest classification within the Beutong IUP area; Protected and Other Purposes. Based on Aceh Provinces's Department of Forestry function map (Number 522.51/4261-III), approximately 36.2% (3,617ha) of the IUP is designated as Areal Penggunaan Lain (APL) or Forest Other Purposes (open pit or underground mining permitted, and the remaining 63.8% (6383ha) is classified as protected or conservation forest (underground mining permitted, no open-pit mining).
	The Beutong project area is 100% within the forest classification APL, the Ministry of Forestry does not require companies to obtain a Pinjam Pakai permit to conduct exploration activities within areas designated APL. No exploration has been carried out in areas outside of the APL area surrounding the Beutong Project.
	Land Ownership and Use
	Other than timber logging, there are no commercial undertakings covering the Beutong Project area. Local inhabitants in the Beutong Ateuh area farm along the Meureubo river that dissects the APL area within the IUP. The Beutong project is located on land owned by several families and EMM has established a cooperative relationship with these families, which has enabled total access to the project area and facilitated the smooth undertaking of exploration and evaluation programmes.

Criteria	Explanation
Exploration	All work relating to the Beutong 2019 Resource Estimate is presented in this document.
done by other parties	The following programmes have been undertaken within the Beutong IUP tenement over a 45 year period:
	 British Geological Survey (BGS) and the Indonesian Bureau of Mineral Resources were the first to recognised mineralisation at Beutong through anomalous stream sediment samples taken during regional mapping and sampling programmes in the mid-1970s to mid-1980s. Rio Tinto Indonesia in joint venture, targeted the Beutong area through stream sediment sampling and mapping (1979-1981) and recognized the porphyry and skarn potential of the area. Two subsequent tenement holders since 1994 (and three workers, in joint venture noted in the "Sampling techniques" section above) have focused their exploration and evaluation work on the porphyry and skarn mineralisation at Beutong, drilling a total of 167 diamond holes, of which 113 holes (33,325m) are within and proximal to mineralisation now subject to the mineral resource estimate reported within. The Measured, Indicated and Inferred Mineral Resources at Beutong (JORC 2012) have been estimated for the West Beutong Porphyry, the East Beutong Porphyry and the Skarn Mineralisation. There are six exploration target areas identified by surface sampling, mapping, geophysical interpretation and limited scout drilling elsewhere in the IUP. Three high priority target areas are adjacent to and in interpreted geological continuity with the estimated resources at Beutong.
Geology	The geological environment that has shaped the geology and geomorphology of Sumatra is dominated by the Sunda Volcanic Arc generated by the subduction of the Indo-Australian plate beneath the Eurasian Plate.
	Beutong Geology
	The principal rock types at Beutong as defined by current mapping have been assigned to four units. From oldest to youngest these are:
	 metamorphosed sedimentary host rocks, serpentinite that predates mineralization, porphyry intrusions (at least 6) of the Beutong Intrusive Complex (BIC), includes the Beutong East Porphyry (BEP) and Beutong West Porphyry (BWP) and post-mineralisation magmatic hydrothermal breccia and smaller occurrences of hydrothermal breccias cemented by pyrite or tourmaline and intrusion breccias. Sedimentary rocks encompass the BIC on all sides, and belong to the Bale Formation of the Jurassic–Cretaceous Woyla Group. These units comprise a thick sequence of variably metamorphosed siltstone, argillite, sandstone and greywacke in the south and central

Criteria	Explanation
	prospect area and reefal and deep water limestone units in the north. The meta-sediments strike in a south-easterly direction, parallel to the Sumatra Fault direction, and dip steeply to the north-northeast. The distribution of these rock types are shown on the geology map and cross-section below. A skarn front has developed along the northern margins of the BEP, where it is in contact with carbonate rocks. Massive basic volcanics, pillow basalts, volcaniclastic sandstones and tuffs of the Geumpang Formation occur in the central-southern project area (south of the BIC and drilled mineralised area).
	Massive serpentinite, interpreted as altered harzburgite, is NW-SE trending and can be traced for more than 3km, primarily following the path of the Beutong River. This unit is locally sheared, mylonitic to schistose and brecciated and marks the inferred thrust fault contact between epiclastics to the southwest and limestone to the northeast.
	The BIC measures approximately 2500m in northeast-southwest dimension by 900 meters in northwest-southeast dimension and is situated 4.5km north of the regional scale Sumatra Fault System. It occurs at the intersection of a NW-SE (Beutong Fault) trending thrust fault and NE-SW strike-slip fault, probably reflecting arc-parallel and arc-normal structures, respectively. The Beutong Fault is interpreted as a splay off the Sumatra Fault System. The BIC was emplaced in the early Pliocene (~4 – 4.66 Ma), into Jurassic–Cretaceous variably metamorphosed rocks of the Woyla Group, which contain northwest–southeast-trending dismembered ophiolite slivers. Late biotite porphyry dykes intrude the BEP, BWP and magmatic hydrothermal breccias and record the waning phases of the BIC in the late Pliocene (~2.58 – 3.06 Ma).
	A large phreatomagmatic breccia body truncates the southern margin of the BEP and dips steeply north at approximately 80°. The breccia extends for a distance of at least 700 m in an east-west direction and has a maximum drilled thickness of 100 meters. The eastern margin remains undefined, and the recent drilling shows that the breccia, as anticipated, continues along the southern edge of the BEP however it appears to be migrating across to the northern hangingwall of the mineralisation and it is interpreted that it will truncate mineralisation to the east of the current eastern drill section (BEU0500). The breccia is highly polymict, clast to matrix supported, and contains abundant mineralized fragments in proximity to its contact with the BEP deposit. With respect to shape, the breccia resembles a tree, comprising a long narrow trunk with several major branches (injection breccias) angled outwards. This turns into an upward flaring funnel shaped breccia body towards surface, creating the impression from its surface expression of being an extensive geologic unit. The breccia is clearly late, but not the final manifestation of quartz ± pyrite ± anhydrite veins.

Criteria	Explanation
	0.5089) + (Ag g/t * 0.0063))
	Beutong Alteration
	The BIC shows characteristic porphyry alteration styles, manifest as a vertically and laterally zoned sequence of propylitic, argillic, phyllic and rare potassic alteration at depth. Superimposed on these is an advanced-argillic alteration assemblage as part of a "high-sulphidation epithermal" mineralization event. The advanced argillic alteration is most extensive at the BWP, where a 50 to 100m thick lithocap is preserved. Propylitic alteration is confined to the contact margins of the BIC and to post mineral dykes and late stage hydrothermal breccias.
	Two zones of exoskarn ± endoskarn have formed along the contact of the Main Beutong Diorite (MBD) and carbonate rocks to the north, approximately 200 meters north of the BEP. The skarn bodies have an E-W orientation with an outcrop strike length of at least 800 meters and widths of between 10 and 60 meters. Drill results indicate at least 300 meters of vertical depth extent of the skarn alteration and mineralization. Exoskarn alteration comprises garnet and pyroxene, as the prograde assemblage, and magnetite, epidote, and tremolite as a retrograde mineral assemblage. The MBD exhibits varying degrees of endoskarn alteration along its northern margin, typically within 25 meters of the limestone. Endoskarn is characterized by garnet ± pyroxene fracture selvedge controlled alteration to more pervasive garnet – pyroxene alteration at the limestone contact. Epiclastic wall rocks are hornfelsed (dark brown), and secondary biotite is converted to chlorite-illite, instead of muscovite.
	Beutong Mineralisation
	Porphyry related copper-gold-molybdenum mineralization at Beutong is invariably contained within stockwork quartz vein systems developed within apical parts of the BEP and BWP and to a lesser extent in the immediate wall rocks (classic wall-rock porphyry mineralization). Mineralization defines two distinct, broad and coherent zones within the BEP and BWP that are sub-vertical and steeply-dipping towards the north. At an approximate 0.3% copper contour the mineralized zones vary in thickness from 175 to 500 meters, but generally average 200m in width and extend to at least 900m depth. Porphyry mineralization outcrops at the BEP, while it is intersected from shallow to moderate depths at the BWP underneath the alteration lithocap (50 to 125 meters). With respect to copper and gold mineralisation, the two element grades do not correlate well, with typically Cu(%):Au(ppm) ratios observed between 1:1 and 8:1. Copper is dominant (~0.60% Cu) in the core of each porphyry system, and gold mineralisation is widely distributed and of low grade tenor (~0.13 g/t Au).
	Molybdenite mineralization is late, overlaps strong copper mineralization and is concentrated mainly in 25 to 75 meter wide zones along the northern porphyry margins and locally along the southern margins. Molybdenite mineralization does not coincide with the magmatic hydrothermal breccia. However, the breccia does contain quartz-anhydrite vein fragments that contain appreciable coarse molybdenite and moderate chalcopyrite.
μ	40

Criteria	Explanation
	Molybdenite occurs as disseminated grains, in centerline vugs of porphyry "B veins", in
	stringers along vein selvages and in hairline veinlets.
	High-sulphidation associated covellite, digenite and chalcocite dominated sulphide assemblage is superimposed onto the early pyrite and chalcopyrite dominant porphyry-type mineralization resulting in hypogene enrichment of the lower grade porphyries. High sulphidation feeder structures are telescoped onto both the BWP and BEP porphyry stockwork systems and are characterized by residual vuggy quartz containing enargite- covellite-pyrite and/or massive pyrite containing appreciable covellite, enargite and luzonite. These zones contain high-grade copper and gold mineralization (intercepts of up to 7.75% Cu and 5.65g/t Au over three meters).
	Locally, zinc–silver–lead mineralization overprints the porphyry mineralization and is typically coincident with the high sulphidation style mineralization and the magmatic hydrothermal breccia or found locally within narrow shear zones. With this style of mineralization there is a distinct change in the texture and colour of the drill core, altering to a darker colour and with notable 'dark sulphide' minerals. Black sphalerite Fe>Zn is interpreted to occur in hotter conditions, and therefore could account for this deep seated zinc mineralization. The highest zinc grades are below the 300m RL, and commonly associated with late stage native sulphur alteration. Interestingly, locally the gold, molybdenite and arsenic grades can be very high with the zinc mineralisation.
	There are two mineralized skarns within the Beutong deposit area. The Southern skarn contains strong copper–gold mineralisation and is interpreted to have formed along the marble front between the BEP and calcareous lithologies to the north. In the top 50 meters the most obvious mineralization is malachite-azurite with other green blue copper oxides and carbonates. The oxides and carbonates transition to sulphides at depth, which is dominated by pyrite, chalcopyrite and lesser bornite. The Northern Skarn contains significant zinc-lead-silver mineralization.
	Strongly quartz stockwork-veined phyllic and potassic altered porphyry and quartz vein fragments have been identified in the phreatomagmatic breccia (along the southern margin of the BEP), these fragments can contain significant chalcopyrite-bornite mineralization. The breccia also contains fragments of mineralized garnet-diopside-magnetite skarn, epiclastics and serpentinite.
	Although unrelated to the porphyry, garnierite has been identified and exists as light green encrustations that are widespread in drill holes and in surface outcrops. Drill intersections show that the garnierite has significant Ni and Co values, with broad drill intersections of ~0.20% Ni and ~100ppm Co. The garnierite may be related to the high sulphidation alteration, formed by acid fluids dissolving nickel sulfides (likely pentlandite) in serpentinite and re-precipitating Ni and Co as garnierite. Garnierite occurs to deep levels in drill holes, and in this case is not related to weathering.

Criteria	Explanation
	BWP BP BEP BEP BEP BE
Drill hole Information	 A summary of drillhole metadata and collar location of holes is presented in the "Sampling techniques" section. Four drilling programs were undertaken in the evaluation the Beutong Project, these being: 1996-97: NQ drilling of 35 holes totalling 4,122m 2007-08: PQ, HQ and NQ triple-tube diamond drilling programme of 91 holes totalling 23,044m 2011-14: PQ, HQ and NQ triple-tube diamond drilling programme of 34 holes totalling 14,262m. 2018: PQ, HQ and NQ triple-tube diamond drilling programme of 7 holes totalling 3,528m. The following table list the significant and modelled intercepts at Beutong and are employed in estimating the 2019 Mineral Resources:

Criteria	Explanation	on							
	Hole	Resource Domain	Intercept	From	То	Interval	Cu(%)	Au(ppm)	Ag(ppm) Mo(ppm)
	002BE96	East Porphyry	Modeled	1.00	121.00	120.00	1.05	0.14	144.42
			incl. >1.0%Cu	1.00	15.00	14.00	1.76	0.13	97.00
			>0.3ppmAu	15.00	21.00	6.00	0.82	0.49	57.00
			incl. >1.0%Cu	33.00	49.00	16.00	1.43	0.10	135.38
			incl. >1.0%Cu	83.00	115.00	32.00	1.26	0.15	141.69
	003BE96	Outer BEP	Modeled	0.00	30.00	30.00	0.26	0.07	62.73
	005BE96	Skarn	Modeled	0.00	10.00	10.00	0.37	0.05	3.00
	008BE96	Outer BEP	Modeled	0.00	120.30	120.30	0.27	0.07	84.95
	009BE96	East Porphyry	Modeled	8.35	30.00	21.65	0.31	0.17	51.93
	011BE96	Not Modelled	>0.3ppmAu	56.00	62.00	6.00	0.38	0.47	1.33
			>0.3%Cu	82.00	88.00	6.00	0.54	0.35	3.33
	012BE96	Not Modelled	>0.3ppmAu	112.00	120.40	8.40	0.07	0.32	11.29
	013BE96	Outer BWP	Modeled	102.00	120.40	18.40	0.08	0.08	28.61
	014BE96	Outer BWP	Modeled	110.00	121.00	11.00	0.01	0.06	83.00
	015BE96	West Porphyry	Modeled	0.00	120.20	120.20	0.03	0.07	48.10
	016BE96	Outer BWP	Modeled	88.00	104.00	16.00	0.20	0.12	117.00
	016BE96	West Porphyry	Modeled	104.00	120.20	16.20	0.37	0.09	115.09
	017BE96	West Porphyry	Modeled	108.00	120.20	12.20	0.66	0.08	63.36
	018BE96	West Porphyry	Modeled	54.60	120.80	66.20	0.69	0.06	143.05
			incl. >1.0%Cu	80.00	86.00	6.00	1.19	0.10	163.67
	019BE96	Not Modelled	>0.3%Cu	96.00	106.00	10.00	1.06	0.42	25.20
			incl. >1.0%Cu	98.00	104.00	6.00	1.30	0.47	23.33
			>0.3ppmAu	98.00	106.00	8.00	1.16	0.47	26.25
	023BE97	Outer BEP	Modeled	0.00	60.00	60.00	0.03	0.06	0.50
	101BE97	Not Modelled	>0.3%Cu	6.00	24.00	18.00	0.41	0.22	499.56
	101BE97	Outer BWP	Modeled	120.00	162.00	42.00	0.14	0.08	20.50
			Modeled	190.00	358.00	168.00	0.26	0.12	66.79
	101BE97	West Porphyry	Modeled	162.00	190.00	28.00	0.38	0.17	59.86

Criteria	Explanation	on								
	Hole	Resource Domain	Intercept	From	То	Interval	Cu(%)	Au(ppm)	Ag(ppm)	Mo(ppm)
	BC001-01	East Porphyry	Modeled	2.50	150.00	147.50	1.16	0.19		124.17
			incl. >1.0%Cu	2.50	56.50	54.00	1.44	0.17		125.53
			>0.3ppmAu	79.50	85.50	6.00	0.86	0.49		43.00
			incl. >1.0%Cu	91.50	103.00	11.50	1.27	0.08		196.78
			incl. >1.0%Cu	116.50	150.00	33.50	1.14	0.21		104.51
	BC001-02	East Porphyry	Modeled	2.50	150.00	147.50	1.32	0.25	2.05	145.17
	00001-02		incl. >1.0%Cu	9.50	107.00	97.50	1.52	0.22	2.00	164.93
			>0.3ppmAu	71.00	77.00	6.00	1.43	0.35	1.70	69.00
			>0.3ppmAu	104.00	150.00	46.00	1.43	0.35	2.13	102.48
			incl. >1.0%Cu	122.00	131.80	9.80	1.11	0.41	1.30	90.59
	B0004.00	E . B .	incl. >1.0%Cu	142.50	150.00	7.50	1.11	0.36	3.60	36.00
	BC001-03	East Porphyry	Modeled	3.00	12.00	9.00	0.05	0.05	0.30	12.67
			Modeled	110.00	150.00	40.00	0.41	0.18	0.77	49.94
	BC001-04	East Porphyry	Modeled	2.70	150.30	147.60	0.92	0.26	4.80	78.19
			incl. >1.0%Cu	21.40	47.00	25.60	1.83	0.46	6.92	110.52
	BC002-01	East Porphyry	Modeled	70.50	150.00	79.50	0.60	0.22	0.62	51.65
			>0.3ppmAu	82.50	91.50	9.00	0.41	0.41		40.67
			>0.3ppmAu	102.00	108.00	6.00	0.54	0.34	0.60	29.50
	BC003-01	East Porphyry	Modeled	11.50	50.50	39.00	0.37	0.38	1.35	56.31
			>0.3ppmAu	38.50	44.50	6.00	0.37	1.14		31.50
	BC004-01	Outer BEP	Modeled	42.00	150.00	108.00	0.30	0.07	0.50	216.09
	BC004-01	East Porphyry	Modeled	9.00	42.00	33.00	0.49	0.03	0.77	280.91
	BC004-01 BC004-02	East Porphyry	Modeled	9.20	134.50	125.30	0.43	0.00	1.16	168.72
	BC004-02 BC004-03		Modeled		150.50	140.00	0.94	0.10	2.03	137.24
	DC004-03	East Porphyry		10.50					2.05	
			incl. >1.0%Cu	13.00	22.00	9.00	1.67	0.06		132.67
			incl. >1.0%Cu	108.00	150.50	42.50	1.20	0.13	3.93	144.81
	BC005-01	Outer BWP	Modeled	83.00	437.00	354.00	0.22	0.12	0.67	42.99
	BC005-01	West Porphyry	Modeled	437.00	732.00	295.00	0.51	0.25	1.27	96.40
			>0.3ppmAu	501.00	540.00	39.00	0.60	0.36	0.70	34.69
			>0.3ppmAu	549.00	579.00	30.00	0.64	0.38	0.85	67.80
			>0.3ppmAu	603.00	630.00	27.00	0.68	0.46	1.25	78.44
			Modeled	819.00	889.20	70.20	0.38	0.13	0.50	163.32
	BC005-02	Outer BWP	Modeled	85.00	376.00	291.00	0.24	0.09	1.97	43.98
			>0.3ppmAu	178.00	184.00	6.00	0.19	0.48	1.30	24.00
			incl. >1.0%Cu	277.00	286.00	9.00	2.50	0.08	11.33	34.33
	BC005-02	West Porphyry	Modeled	376.00	692.20	316.20	0.43	0.19	1.28	62.25
	20000 02	treat i orphyty	>0.3ppmAu	424.00	430.00	6.00	0.37	0.39	0.70	52.50
			incl. >1.0%Cu	466.00	472.00	6.00	1.36	0.09	7.00	46.50
			1	525.00	531.00	6.00	0.54	0.03	1.00	65.00
			>0.3ppmAu	669.00	689.50	20.50	0.54	0.34	0.00	49.73
	D0005.02	Outer BWP	>0.3ppmAu						0.90	
	BC005-03	Outer BVVP	Modeled	86.00	107.00	21.00	0.22	0.10	4.57	127.14
			Modeled	155.00	167.00	12.00	0.25	0.05	0.30	77.25
			Modeled	227.00	519.40	292.40	0.23	0.07	0.79	36.69
	BC005-03	West Porphyry	Modeled	107.00	155.00	48.00	0.49	0.08	0.57	110.56
			Modeled	167.00	227.00	60.00	0.37	0.09	0.48	123.85
			Modeled	519.40	687.00	167.60	0.37	0.12	0.75	141.97
			Modeled	801.00	901.00	100.00	0.34	0.06	0.87	327.98
	BC005-04	Not Modelled	>0.3ppmAu	39.00	45.00	6.00	0.03	0.46		205.00
	BC005-04	Outer BWP	Modeled	99.00	168.00	69.00	0.07	0.12	3.14	108.96
			Modeled	189.00	213.00	24.00	0.15	0.03	0.90	34.25
	BC005-04	West Porphyry	Modeled	168.00	189.00	21.00	0.59	0.05	0.65	76.86
			Modeled	213.00	616.00	403.00	0.51	0.07	1.14	237.45
			incl. >1.0%Cu	355.00	364.00	9.00	1.31	0.09	2.20	486.67
	BC005-05	Not Modelled	>0.3ppmAu	533.00	539.00	6.00	0.13	1.11	2.20	48.00
		Outer BWP							0.00	
	BC005-05		Modeled	87.00	121.00	34.00	0.09	0.08	0.25	15.18
	BC005-05	West Porphyry	Modeled	121.00	416.00	295.00	0.38	0.10	0.56	64.56
			>0.3ppmAu	171.50	199.00	27.50	0.75	0.43	1.20	88.93

Explanati	on								
Hole	Resource Domain	Intercept	From	То	Interval	Cu(%)	Au(ppm)	Ag(ppm)	Mo(ppm)
BC006-01	Outer BEP	Modeled	33.00	128.50		0.13	0.04	2.54	26.25
BC006-01	East Porphyry	Modeled	128.50	150.00	21.50	0.37	0.06	0.30	142.84
BC007-01	Skarn	Modeled	48.00	96.00	48.00	1.63	0.88	15.52	4.8
		incl. >1.0%Cu	48.00	81.00		2.31	1.23	18.00	5.7
		>0.3ppmAu	51.00	78.00		2.55	1.46	19.11	4.7
		incl. >1.0ppmAu	57.00	72.00		2.76	2.16	22.80	3.6
BC007-02	Skarn	Modeled	54.00	63.00		1.38	0.42	6.50	1.0
20001 02	- Chain	incl. >1.0%Cu	54.00	60.00		1.68	0.50	6.50	1.2
		>0.3ppmAu	54.00	60.00	6.00	1.68	0.50	6.50	1.2
		Modeled	72.00	150.00		0.41	0.09	6.39	6.0
		incl. >1.0%Cu	84.00	96.00		1.30	0.00	11.50	6.5
BC007-03	Skarn	Modeled	51.80	108.00		0.95	0.20	11.28	4.0
BC007-03	Skam	incl. >1.0%Cu	55.00	69.50	14.50		0.20	15.14	4.0
BC008-01	Skarn	Modeled	9.00	30.00		2.42	1.02	5.78	2.6
DC000-01	Skam	I I							
		>0.3ppmAu	12.00	24.00	12.00	0.82	1.74	6.50	2.7
		incl. >1.0ppmAu	17.60	24.00	1 1	0.77	2.92	6.53	3.0
		Modeled	75.00	111.00		0.50	0.08	5.36	15.7
BC008-02	Skarn	Modeled	11.30	36.00		0.76	0.24	11.34	5.1
		incl. >1.0%Cu	11.30	24.00		1.11	0.27	12.47	4.1
BC009-01	Outer BEP	Modeled	87.00	105.00	18.00	0.45	0.03	3.95	93.3
BC009-01	East Porphyry	Modeled	105.00	150.00	45.00	0.40	0.09	2.72	83.0
BC010-01	East Porphyry	Modeled	11.00	150.00		0.69	0.11	1.05	75.4
		incl. >1.0%Cu	56.00	75.00	19.00	1.28	0.29	1.70	26.9
		>0.3ppmAu	59.00	65.20	6.20	1.34	0.39		15.1
BC010-02	East Porphyry	Modeled	7.50	150.00	142.50	0.61	0.08	0.77	110.9
BC010-03	East Porphyry	Modeled	7.50	150.00	142.50	0.49	0.11	1.00	37.6
BC010-04	East Porphyry	Modeled	3.00	150.00	147.00	0.47	0.07	0.72	121.6
BC011-01	East Porphyry	Modeled	134.00	326.50	192.50	0.60	0.17	9.18	83.5
		>0.3ppmAu	268.00	274.00	6.00	0.72	0.41		96.5
		incl. >1.0%Cu	274.00	280.00	6.00	1.10	0.22	4.05	39.0
BC011-02	East Porphyry	Modeled	109.00	410.00	301.00	0.46	0.12	1.64	73.7
		Modeled	479.00	545.00	66.00	0.60	0.08	2.78	176.7
		incl. >1.0%Cu	518.00	524.00		1.06	0.14		79.5
		Modeled	614.00	700.00	86.00	0.71	0.17	8.71	250.8
BC011-03	East Porphyry	Modeled	84.00	259.20		0.50	0.14	4.29	68.0
		>0.3ppmAu	109.00	115.00		0.69	0.33		182.5
		>0.3ppmAu	160.00	172.00	12.00	0.55	0.28	13.75	65.2
BC011-03A	East Porphyry	Modeled	259.20	350.00		0.72	0.09	1.30	69.5
200110011		Modeled	398.00	404.00	6.00	1.27	0.19		189.0
		incl. >1.0%Cu	398.00	404.00	6.00	1.27	0.19		189.0
BC013-01	Outer BEP	Modeled	20.00	150.00		0.31	0.03	2.13	194.8
BC013-02	Outer BEP	Modeled	10.00	78.00		0.21	0.03	1.00	83.6
20010 02		Modeled	114.00	143.90		0.17	0.03	0.90	109.7
BC013-02	East Porphyry	Modeled	78.00	114.00	36.00	0.44	0.04	6.67	166.1
BC013-02	Outer BEP	Modeled	7.00	150.00		0.23	0.00	1.52	68.1
20010-00		>0.3ppmAu	131.00	140.00	9.00	0.43	0.45	2.70	47.3
BC014-01	Not Modelled	>0.3%Cu	314.00	320.00		0.43	0.43	2.10	10.0
00014-01	Not Modelled	>0.3%Cu	488.00	497.00		0.34	0.04		9.0
		>0.3%Cu >0.3ppmAu	400.00 536.00	497.00 542.00		0.46	0.02		9.0 65.0
BC014-02	West Porphyry	Modeled	112.00	125.00			0.46		6.6
						0.04		E 04	
BC014-03	West Porphyry	Modeled	99.20	126.00		0.34	0.09	5.01	46.7
		Modeled	165.00	177.00		0.40	0.08	5.50	23.7
Donate et	E 10 1	Modeled	217.00	495.00		0.28	0.08	1.45	298.7
BC015-01	East Porphyry	Modeled	28.60	150.00		0.72	0.19	1.85	61.1
		incl. >1.0%Cu	65.00	74.00		1.28	0.25	1.90	43.0
		incl. >1.0%Cu	89.00	95.00		1.22	0.28		77.0
BC015-02	East Porphyry	Modeled	29.80	150.00	120.20	0.35	0.13	1.88	120.1

Criteria	Explanatio	on								
	Hole	Resource Domain	Intercept	From	То	Interval	Cu(%)	Au(ppm)	Ag(ppm)	Mo(ppm)
	BC015-03	East Porphyry	Modeled	25.80	150.00	124.20	0.77	0.20	1.45	74.14
			>0.3ppmAu	29.00	35.00	6.00	0.71	0.30		93.50
			incl. >1.0%Cu	101.00	107.00	6.00	1.05	0.25	5.00	191.50
			incl. >1.0%Cu	119.00	150.00	31.00	1.16	0.26	1.50	61.24
			>0.3ppmAu	128.00	140.00	12.00	1.09	0.42		71.25
	BC016-01	East Porphyry	Modeled	9.40	150.00	140.60	0.49	0.07	2.22	136.23
	BC016-02	East Porphyry	Modeled	9.60	150.00	140.40	0.70	0.10	0.84	54.27
			incl. >1.0%Cu	28.00	37.00	9.00	1.13	0.13		103.67
	BC016-03	East Porphyry	Modeled	8.00	150.00	142.00	0.77	0.10	1.47	92.73
	2001000	Lastr sipily	incl. >1.0%Cu	68.00	83.00	15.00	1.16	0.09	1.05	81.20
	BC017-01	Skarn	Modeled	15.00	30.00	15.00	0.33	0.13	4.66	8.27
	BC017-02	Skarn	Modeled	26.90	86.20	59.30	1.41	0.20	15.56	6.33
	00011-02	Onam	incl. >1.0%Cu	30.00	36.00	6.00	1.13	0.15	7.50	4.50
			incl. >1.0%Cu	45.00	86.20	41.20	1.73	0.13	17.42	6.61
	BC017-03	Skarn	Modeled	15.10	123.00	107.90	0.84	0.24	7.27	5.70
	DC017-03	OKalli	1 1			99.00				5.60
			>0.3ppmAu	24.00	123.00		0.83	0.81	5.77	
			incl. >1.0%Cu	39.00	54.00	15.00	1.15	0.94	6.00	5.60
			incl. >1.0%Cu	86.60	119.80	33.20	1.21	1.29	7.72	4.87
	50040.04		incl. >1.0ppmAu	93.00	102.00	9.00	1.36	2.58	5.80	7.00
	BC018-01	Not Modelled	>0.3ppmAu	87.50	97.30	9.80	0.14	0.46	7.00	8.28
	BC018-01	Skarn	Modeled	31.00	87.50	56.50	0.40	0.15	1.07	67.86
			incl. >1.0%Cu	75.00	84.00	9.00	1.27	0.37		9.67
			>0.3ppmAu	78.00	87.50	9.50	0.96	0.43		6.79
	BC018-02	Skarn	Modeled	141.00	150.00	9.00	0.38	0.17	5.80	25.33
	BC018-03	Skarn	Modeled	37.40	102.00	64.60	0.32	0.16	6.75	43.52
			incl. >1.0%Cu	75.00	81.00	6.00	1.36	0.56	9.00	9.50
			>0.3ppmAu	75.00	81.00	6.00	1.36	0.56	9.00	9.50
	BC020-01	Outer BEP	Modeled	13.50	98.00	84.50	0.17	0.18	12.71	41.57
			>0.3ppmAu	26.00	41.00	15.00	0.06	0.63	17.80	58.00
			Modeled	144.00	150.00	6.00	0.15	0.11		42.00
	BC020-01	East Porphyry	Modeled	98.00	144.00	46.00	0.30	0.07	0.98	92.11
	BC020-02A	Outer BEP	Modeled	15.30	27.00	11.70	0.05	0.08	0.20	7.46
	BC020-03	Not Modelled	>0.3%Cu	133.00	150.00	17.00	0.74	0.17	0.60	33.29
	BC020-03	Outer BEP	Modeled	13.30	94.00	80.70	0.23	0.07	0.84	30.64
	BC021-01	Outer BEP	Modeled	10.00	21.20	11.20	0.19	0.27	0.20	20.40
	BC021-01	East Porphyry	Modeled	21.20	150.00	128.80	0.54	0.07	1.20	80.01
	BC021-02	Not Modelled	>0.3%Cu	46.50	65.00	18.50	0.35	0.10	1.50	88.16
	0002102	Not modelicu	>0.3%Cu	74.00	80.00	6.00	0.51	0.19	2.90	6.50
			>0.3%Cu	131.00	137.00	6.00	0.39	0.05	13.00	8.50
	BC021-02	Outer BEP	Modeled	8.20	32.00	23.80	0.09	0.03	0.41	7.53
	BC025-01	Not Modelled	>0.3%Cu	63.50	69.50	6.00	4.00	0.02	4.20	35.50
	BC025-01	Not Modelled	>0.3%Cu	67.00	97.00	30.00	0.47	0.10	0.60	54.90
	DC025-02	Not wodelled	1 1						0.60	
	D0005.00	NL I MA LUI I	>0.3ppmAu	428.00	434.00	6.00	0.07	1.64	4.40	41.00
	BC025-03	Not Modelled	>0.3%Cu	57.00	84.00	27.00	0.55	0.10	1.10	83.33
	BC026-01	Outer BEP	Modeled	3.00	150.00	147.00	0.24	0.07	2.53	4.34
	BC026-02	Outer BEP	Modeled	5.80	150.00	144.20	0.14	0.03	4.29	8.19
	BC027-02	Not Modelled	>0.3ppmAu	63.00	69.00	6.00	0.13	0.38	9.00	4.50
	BC028-01	West Porphyry	Modeled	135.00	150.00		0.33	0.03	0.30	129.40
	BC028-02	Not Modelled	>0.3%Cu	119.00	133.00	14.00	1.27	0.29	61.29	87.21
			incl. >1.0%Cu	122.00	130.50	8.50	1.66	0.31	67.06	101.94
			>0.3ppmAu	125.00	140.80	15.80	0.82	0.48	84.02	93.49
	BC028-03	Not Modelled	>0.3%Cu	108.00	114.00	6.00	0.40	0.01		14.50
	BC029-01	Not Modelled	>0.3%Cu	29.00	35.00	6.00	0.36	0.07		76.50
	BC029-01	Outer BEP	Modeled	123.00	292.80	169.80	0.38	0.16	1.32	171.54
			incl. >1.0%Cu	216.00	228.00	12.00	1.21	0.13	1.50	419.00
	BC029-01A	Not Modelled	>0.3%Cu	614.00	620.00	6.00	0.32	0.09	1.30	128.00
	00025-01A	Not modelled	>0.3%Cu		620.00					
			~v.5%Cu	651.00	007.00	6.00	0.36	0.08		104.50

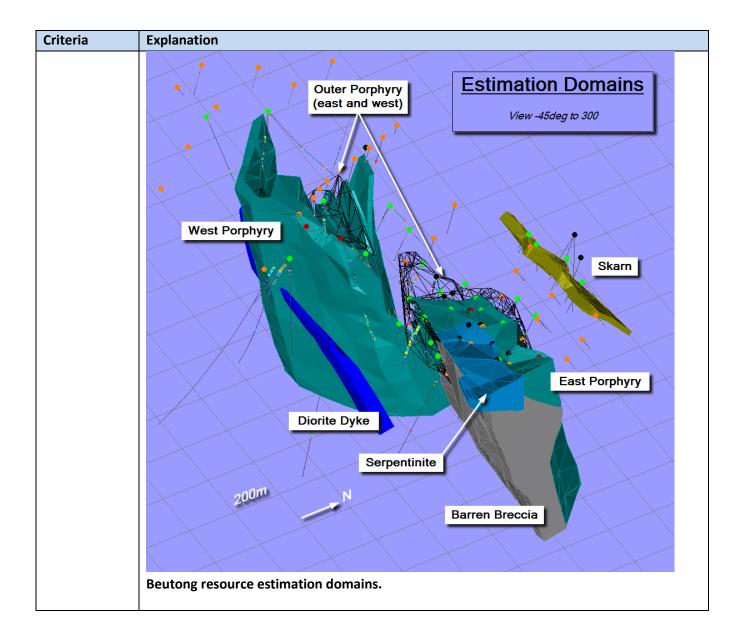
teria	Explanatio	on								
	Hole	Resource Domain	Intercept	From	То	Interval	Cu(%)	Au(ppm)	Ag(ppm)	Mo(ppm)
	BC029-01A	Outer BEP	Modeled	292.80	416.00		0.40	0.09	1.40	121.05
			incl. >1.0%Cu	308.00	314.00	6.00	1.25	0.29	2.60	172.00
	BC029-01A	East Porphyry	Modeled	416.00	577.50	161.50	0.49	0.12	3.18	198.76
			>0.3ppmAu	504.00	514.20	10.20	1.28	0.44	8.72	157.08
			incl. >1.0%Cu	507.50	514.20		1.57	0.48	9.09	209.36
			Modeled	846.00	869.00	23.00	0.36	0.06	2.19	201.76
	BC029-02	Not Modelled	>0.3%Cu	142.00	148.00	6.00	0.35	0.04	1.00	130.00
			>0.3%Cu	495.00	501.00	6.00	0.63	0.03		12.50
			>0.3%Cu	609.00	615.00	6.00	0.71	0.05	1.90	25.00
	BC032-01	Not Modelled	>0.3%Cu	9.00	18.00		0.47	0.00		1.17
			>0.3%Cu	30.00	36.00		0.53	0.00		2.25
	BEU0600-02	East Porphyry	Modeled	39.50	72.50		0.05	0.05	0.91	7.32
			Modeled	169.00	197.00	28.00	0.38	0.11	1.34	44.95
			Modeled	231.50	446.10	214.60	0.45	0.09	1.24	70.09
	BEU0600-03	East Porphyry	Modeled	158.00	232.40	74.40	0.21	0.17	1.10	69.16
	BEU0700-01	Skarn	Modeled	96.00	142.00	46.00	0.30	0.11	3.48	9.76
	BEU0700-02	East Porphyry	Modeled	41.00	270.50	229.50	0.45	0.11	1.20	73.68
	2200100 02	Edot i orphyty	>0.3ppmAu	126.00	132.00		0.72	0.33	1.15	57.50
	BEU0700-03	East Porphyry	Modeled	74.50	459.20		0.67	0.21	4.42	99.68
	DECONTO US	East r orphyry	>0.3ppmAu	95.50	117.00		0.33	1.27	32.69	34.20
			incl. >1.0ppmAu	101.50	107.50		0.52	3.69	101.70	28.00
			incl. >1.0%Cu	164.00	179.00	15.00	1.08	0.12	2.78	97.60
			incl. >1.0%Cu	354.00	366.00		1.05	0.09	4.45	171.25
			incl. >1.0%Cu	438.00	444.00	6.00	1.33	0.29	3.20	128.00
	BEU0700-04	East Porphyry	Modeled	136.00	360.00		0.73	0.12	3.58	73.86
	DE00100-04	Last i orphyry	incl. >1.0%Cu	257.00	263.00	6.00	1.18	0.09	2.60	196.00
			incl. >1.0%Cu	296.00	311.00		1.01	0.03	2.88	78.60
			Modeled	375.00	420.00	45.00	0.58	0.07	1.69	86.73
			Modeled	444.00	461.70		0.30	0.07	2.82	69.98
	BEU0700-05	East Porphyry	Modeled	136.00	409.00		0.47	0.03	1.27	45.48
	BEU0700-07	East Porphyry	Modeled	143.55	347.00		0.57	0.12	2.45	74.38
	DEOUTOO-OT	Last Polphyry	Modeled	383.00	407.20		0.44	0.06	1.64	55.26
	BEU0800-01	East Porphyry	Modeled	3.25	220.50		1.18	0.00	2.49	96.47
	DEGOODO	East r orphyry	incl. >1.0%Cu	6.35	89.00		1.45	0.16	2.00	92.88
			incl. >1.0%Cu	103.00	111.00	8.00	1.35	0.18	16.66	64.56
			>0.3ppmAu	111.00	124.75		0.79	0.35	1.19	108.85
			incl. >1.0%Cu	139.85	170.50	30.65	1.37	0.30	2.19	42.08
			>0.3ppmAu	152.60	168.50		1.43	0.30	2.48	29.93
			incl. >1.0%Cu	176.50	196.30	19.80	1.43	0.20	2.40	104.38
			incl. >1.0%Cu	200.90	207.30		1.20	0.25	1.83	250.84
	BEU0800-02	East Porphyry	Modeled	2.80	349.90	347.10	1.06	0.18	1.72	132.54
	DE0000-02	Last i orphyry	incl. >1.0%Cu	10.70	87.00		1.48	0.15	1.68	88.92
			incl. >1.0%Cu	101.00	107.00		1.40	0.13	1.57	221.00
			>0.3ppmAu	121.00	148.80		0.97	0.45	1.58	114.84
			incl. >1.0%Cu	121.00	140.00		1.10	0.45	1.50	161.70
			incl. >1.0%Cu	147.00	215.85	33.85	1.10	0.21	2.16	134.23
			incl. >1.0%Cu	229.00	255.00		1.35	0.18	2.10	189.74
			incl. >1.0%Cu	229.00	305.00		1.35	0.25	2.42	76.33
	BEU0800-03	East Porphyry	Modeled	299.00	335.90		0.79	0.11	2.55	106.06
	DE00000-03	East Porphyry	incl. >1.0%Cu							
			1	20.00	115.00	95.00	1.46	0.22	3.02	133.80
			>0.3ppmAu	110.00	117.50		1.12	0.34	1.93	115.67
	DELIGORO AL	0	incl. >1.0%Cu	221.00	227.00	6.00	1.44	0.14	2.15	145.50
	BEU0800-04	Skarn	Modeled	124.10	136.95		0.41	0.13	8.09	4.33
			Modeled	149.60	211.50		0.80	0.28	6.14	4.20
			incl. >1.0%Cu	149.60	158.60		1.91	0.21	20.37	1.33
			incl. >1.0%Cu	182.60	193.50		1.39	0.84	7.10	1.58
			>0.3ppmAu	182.60	196.50	13.90	1.17	0.77	5.91	1.45

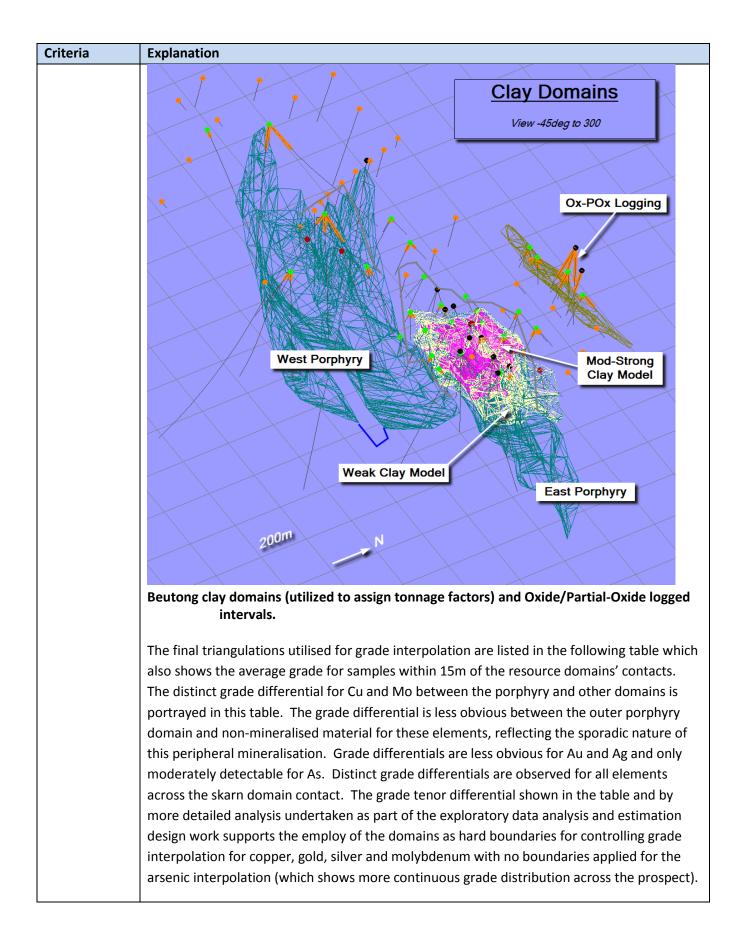
Criteria	Explanatio	on								
	Hole	Resource Domain	Intercept	From	То	Interval	Cu(%)	Au(ppm)	Ag(ppm)	Mo(ppm)
	BEU0800-05	East Porphyry	Modeled	97.00	333.00	236.00	0.59	0.17	1.32	73.11
			>0.3ppmAu	177.00	186.00	9.00	0.76	0.47	0.67	35.67
			Modeled	351.00	399.00	48.00	0.73	0.06	1.69	95.64
			Modeled	459.00	525.00	66.00	0.57	0.08	1.60	73.25
	BEU0800-06	Skarn	Modeled	290.20	308.80	18.60	0.53	0.30	6.08	34.56
	BEU0800-07	Skarn	Modeled	121.00	177.50	56.50	1.39	0.38	6.84	2.35
	22000000	Chain	incl. >1.0%Cu	121.00	162.50	41.50	1.78	0.43	8.02	1.82
			>0.3ppmAu	127.00	139.00	12.00	2.42	0.85	8.00	1.50
	BEU0800-08	East Porphyry	Modeled	94.00	227.80	133.80	0.46	0.05	1.64	45.50
	DL0000-00	Last Forphyry	1 1	118.00	124.00	6.00	0.45	0.10	1.04	88.50
	BEU0800-09	Outer BEP	>0.3ppmAu	65.00	109.50	44.50	0.45	0.02	3.01	38.54
			Modeled							
	BEU0800-09	East Porphyry	Modeled	109.50	448.50	339.00	0.58	0.12	1.13	111.47
			incl. >1.0%Cu	274.60	301.60	27.00	1.21	0.17	2.12	87.56
			incl. >1.0%Cu	316.00	322.00	6.00	1.27	0.09	1.65	114.00
			incl. >1.0%Cu	367.00	373.00	6.00	1.19	0.14	2.35	134.50
			>0.3ppmAu	430.00	439.00	9.00	0.86	0.46	1.33	93.00
	BEU0800D01	East Porphyry	Modeled	111.00	390.00	279.00	0.54	0.13	1.20	83.04
			Modeled	438.00	498.00	60.00	0.57	0.07	1.87	67.13
			Modeled	503.00	526.00	23.00	0.73	0.09	2.15	287.78
			Modeled	532.00	725.00	193.00	0.62	0.13	5.82	145.94
			incl. >1.0%Cu	622.00	640.00	18.00	1.08	0.09	10.05	286.50
	BEU0900-01	East Porphyry	Modeled	5.30	379.50	374.20	0.89	0.13	2.03	117.45
			incl. >1.0%Cu	8.30	17.30	9.00	1.32	0.27	1.87	57.33
			>0.3ppmAu	14.30	26.30	12.00	0.94	0.43	2.17	124.00
			incl. >1.0%Cu	29.30	35.30	6.00	1.36	0.29	1.50	587.00
			>0.3ppmAu	44.30	53.30	9.00	1.43	0.42	6.67	115.67
			incl. >1.0%Cu	53.30	74.30	21.00	1.23	0.42	1.83	156.86
			incl. >1.0%Cu	95.30	101.30	6.00	1.25	0.17	1.00	53.00
			1							
			incl. >1.0%Cu	168.30	192.30	24.00	1.17	0.09	2.08	148.88
			incl. >1.0%Cu	219.30	231.30	12.00	1.03	0.13	2.45	85.75
			incl. >1.0%Cu	291.00	315.00	24.00	1.10	0.07	2.73	98.25
			Modeled	436.20	501.00	64.80	0.55	0.11	1.64	113.45
			incl. >1.0%Cu	439.00	445.00	6.00	1.13	0.07	2.35	383.50
			>0.3ppmAu	471.00	477.00	6.00	0.88	0.32	2.20	53.00
			Modeled	549.00	709.00	160.00	0.75	0.19	7.07	247.77
			>0.3ppmAu	680.00	689.00	9.00	1.06	0.39	2.17	46.00
			incl. >1.0%Cu	683.00	689.00	6.00	1.12	0.41	2.20	38.50
	BEU0900-02	Outer BEP	Modeled	179.00	274.40	95.40	0.35	0.04	0.72	262.30
	BEU0900-02	East Porphyry	Modeled	5.30	179.00	173.70	0.78	0.08	1.47	123.84
			incl. >1.0%Cu	5.30	20.00	14.70	1.62	0.16	1.77	151.55
			incl. >1.0%Cu	29.00	41.00	12.00	0.96	0.09	2.65	103.00
			incl. >1.0%Cu	101.00	116.00	15.00	1.10	0.05	3.60	137.00
	BEU0900-03	East Porphyry	Modeled	4.50	304.50	300.00	0.65	0.14	1.37	62.71
			>0.3ppmAu	7.00	33.00	26.00	0.52	0.36	1.08	172.00
			>0.3ppmAu	72.00	78.00	6.00	0.91	0.34	1.55	19.00
			>0.3ppmAu	233.00	239.00	6.00	0.87	0.54	1.55	47.50
				342.50	372.00	29.50	0.60	0.04	2.06	88.35
	BEU0900-04	Fact Dorphyny	Modeled Modeled							55.09
	BE00900-04	East Porphyry		5.20	283.00		0.63	0.12	1.10	
			>0.3ppmAu	67.00	73.00	6.00	0.84	0.39	1.30	12.50
			incl. >1.0%Cu	274.00	280.00	6.00	1.23	0.10	3.10	43.00
			Modeled	313.00	330.00	17.00	0.64	0.03	1.82	84.79
	BEU0900-05	Outer BEP	Modeled	284.00	309.00	25.00	0.47	0.03	3.86	137.36
	BEU0900-05	East Porphyry	Modeled	5.50	230.00	224.50	0.71	0.14	1.29	44.03
			incl. >1.0%Cu	50.00	62.00	12.00	1.33	0.41	2.22	8.50
			>0.3ppmAu	50.00	65.00	15.00	1.26	0.39	2.08	9.20
	BEU1000-01	Outer BEP	Modeled	13.00	101.00	88.00	0.31	0.06	1.20	111.15

Criteria	Explanatio	on								
	Hole	Resource Domain	Intercept	From	То	Interval	Cu(%)	Au(ppm)	Ag(ppm)	Mo(ppm)
	BEU1000-01	East Porphyry	Modeled	101.00	330.50	229.50	0.60	0.06	1.88	193.80
			incl. >1.0%Cu	245.00	251.00	6.00	1.11	0.19	2.35	155.00
			incl. >1.0%Cu	310.00	328.00	18.00	1.31	0.06	3.07	38.17
			Modeled	348.00	410.00	62.00	0.77	0.04	5.55	76.78
			incl. >1.0%Cu	395.00	401.00	6.00	1.09	0.06	26.70	129.50
	BEU1000-02	Outer BEP	Modeled	8.00	154.00	146.00	0.25	0.04	0.94	106.40
	BEU1000-02	East Porphyry	Modeled	154.00	406.70	252.70	0.67	0.05	1.66	86.94
			incl. >1.0%Cu	348.10	404.00	55.90	1.29	0.08	3.11	164.56
	BEU1000-03	Outer BEP	Modeled	5.25	219.20	213.95	0.25	0.03	1.42	188.00
	BEU1000-04	Outer BEP	Modeled	6.50	104.00	97.50	0.29	0.07	1.49	118.96
			Modeled	227.00	230.00	3.00	0.50	0.03	0.60	
	BEU1000-04	East Porphyry	Modeled	104.00	227.00	123.00	0.34	0.02	0.65	145.87
			Modeled	230.00	337.00	107.00	0.52	0.04	1.05	405.02
	BEU1000-05	Not Modelled	>0.3%Cu	352.50	364.30	11.80	0.49	0.07	1.37	29.69
	BEU1100-01	Outer BEP	Modeled	9.50	24.00	14.50	0.35	0.05	0.82	30.07
	BEU1100-02	Not Modelled	>0.3%Cu	353.00	369.50	16.50	0.39	0.03	1.09	
	BEU1100-02	Outer BEP	Modeled	4.80	239.00	234.20	0.29	0.04	1.49	
			incl. >1.0%Cu	50.00	62.00	12.00	1.61	0.04	7.20	46.25
			incl. >1.0%Cu	98.00	104.00	6.00	1.31	0.20	7.30	35.50
			Modeled	257.00	335.00	78.00	0.32	0.02	0.72	122.58
	BEU1100-02	East Porphyry	Modeled	239.00	257.00	18.00	1.03	0.07	1.15	258.33
			incl. >1.0%Cu	251.00	257.00	6.00	2.21	0.02	1.35	366.50
	BEU1100-03	Outer BEP	Modeled	7.50	228.00	220.50	0.15	0.02	0.78	25.54
			Modeled	300.00	330.00	30.00	0.18	0.03	0.43	41.50
	BEU1100-03	East Porphyry	Modeled	228.00	300.00	72.00	0.44	0.06	1.65	268.38
	BEU1700D01	Not Modelled	>0.3%Cu	1338.00	1359.00	21.00	0.33	0.06	0.51	160.36
	BEU1700D01	East Porphyry	Modeled	102.00	387.00	285.00	0.60	0.10	0.95	167.32
			>0.3ppmAu	102.00	108.00	6.00	0.50	0.36	1.65	67.50
			incl. >1.0%Cu	177.00	183.00	6.00	1.22	0.08	0.75	136.50
			incl. >1.0%Cu	201.00	216.00	15.00	1.15	0.08	2.04	362.00
			>0.3ppmAu	246.00	252.00	6.00	0.88	0.38	1.30	142.50
			Modeled	522.00	821.00	299.00	0.43	0.17	0.67	191.75
			>0.3ppmAu	604.00	613.00	9.00	0.62	0.36	0.72	748.33
			>0.3ppmAu	755.00	761.00	6.00	0.55	0.36	0.97	133.25
			>0.3ppmAu	779.00	788.00	9.00	0.65	0.36	1.17	67.67

	Hole	Resource Domain	Intercept	From	To	Interval	Cu(%)	Au(ppm)	Ag(ppm)	Mo(ppm)
	BEU0500-01	East Porphyry	Modeled	5.00		169.00	0.77	0.22	Ag(ppm) 1.42	115.80
	DEGREGATION	East r orphyry	incl. >1.0%Cu	27.00		6.00	1.16	0.25	2.00	46.00
			incl. >1.0%Cu	43.00	-	10.00	1.06	0.32	1.90	76.40
			incl. >1.0%Cu	93.25		26.75	1.13	0.23	1.68	159.50
			incl. >1.0%Cu		116.00	6.00	1.49	0.46	1.43	164.67
			>0.3%Au		116.00	6.00	1.49	0.46	1.43	164.67
			Modeled		266.00	76.00	0.51	0.11	1.29	146.95
			Modeled		304.00	22.00	0.38	0.20	1.45	104.55
			Modeled		452.00	72.00	0.52	0.20	1.90	137.31
			Modeled		452.00	14.00	0.53	0.48	2.43	140.86
			>0.3%Au		452.00	14.00	0.53	0.48	2.43	140.86
	BEU0900-06	East Porphyry	Modeled	7.00	71.90	64.90	0.99	0.15	0.82	112.06
			incl. >1.0%Cu	13.00	21.00	8.00	1.18	0.14	0.68	150.50
			incl. >1.0%Cu	57.00	71.90	14.90	1.17	0.16	1.03	120.05
	BEU0900-07	East Porphyry	Modeled	8.50		79.30	0.69	0.15	1.04	69.49
	BEU0900-08	East Porphyry	Modeled	7.50	466.00	458.50	0.93	0.15	2.15	119.57
			incl. >1.0%Cu	76.50	86.50	10.00	1.12	0.16	2.00	114.80
			incl. >1.0%Cu	100.50	114.50	14.00	1.01	0.14	1.26	174.57
			incl. >1.0%Cu	138.50	164.50	26.00	1.19	0.21	2.11	92.77
			incl. >1.0%Cu	194.50	221.00	26.50	1.41	0.17	2.54	148.82
			incl. >1.0%Cu	259.00	281.00	22.00	1.16	0.16	2.02	104.27
			incl. >1.0%Cu		315.50	26.50	1.26	0.26	2.67	69.79
			incl. >1.0%Cu	303.00	309.00	6.00	1.42	0.56	2.47	106.33
			>0.3%Au	303.00	309.00	6.00	1.42	0.56	2.47	106.33
			incl. >1.0%Cu	324.00	330.00	6.00	1.03	0.43	2.03	180.67
			>0.3%Au	324.00	330.00	6.00	1.03	0.43	2.03	180.67
			incl. >1.0%Cu	394.00	402.00	8.00	1.22	0.13	12.95	96.75
			incl. >1.0%Cu		446.00	10.00	1.08	0.09	2.26	112.20
			incl. >1.0%Cu	458.00	464.00	6.00	1.11	0.14	2.43	151.33
		Not Modelled	>0.3%Cu	505.50	519.50	14.00	0.62	0.13	1.11	61.86
			>0.3%Cu		583.50	24.00	0.43	0.05	1.03	85.50
			>0.3%Cu	593.50	607.80	14.30	0.63	0.05	4.36	132.80
	BEU1350-01	West Porphyry	Modeled	110.00	136.00	26.00	1.11	0.07	0.79	169.23
			Modeled		178.00	10.00	1.25	0.15	0.55	88.40
			Modeled		750.60	466.60	0.50	0.08	1.57	173.53
			incl. >1.0%Cu		360.00	6.00	1.67	0.11	12.77	108.00
	BEU1350-02	West Porphyry	Modeled		472.00	96.00	0.36	0.04	0.31	98.23
			Modeled		572.00	66.00	0.35	0.04	0.37	114.61
			Modeled		750.00	150.00	0.53	0.05	0.85	238.57
	BEU1450-01	West Porphyry	Modeled		215.00	197.00	0.25	0.34	2.01	64.00
			Modeled	18.00		42.00	0.02	0.66	0.45	33.86
			>0.3%Au	18.00		42.00	0.02	0.66	0.45	33.86
			Modeled	88.00		8.00	0.03	0.98	10.88	28.50
			>0.3%Au	88.00		8.00	0.03	0.98	10.88	28.50
			Modeled		136.00	26.00	0.02	0.63	2.45	44.62
			>0.3%Au		136.00	26.00	0.02	0.63	2.45	44.62
		Outer DWD	incl. >1.0%Cu		213.00	6.00	1.03	0.08	0.65	103.33
		Outer BWP	Modeled		382.00		0.49	0.08	0.73	71.35
		West Porphyry	Modeled		474.00	92.00	0.29	0.08	0.68	65.48
		Outer BWP	Modeled		562.00		0.41	0.08	1.02	95.95
		West Porphyry	Modeled	562.00	750.00	188.00	0.46	0.09	0.83	56.49
a	Raw assay	s were used in t	he TIN domain	mod	elling	process				
					56	p1000033	•			
egation										
hods	3m compo	sites were gene	erated and cod	ed by	triang	ulation	s with	the sar	ne doma	ain code
		-			-					
	values as u	used in coding th	he block mode	Inter	polati	on dom	iains.	individu	ial inter	cepts ar
	tabulated	in the "Drill hole	Information"	sectio	on (ah	ove) (omno	site nur	nhers ar	nd avera
					-	-	Sinpo	Site nul		
	grades wit									

Criteria	Explanation											
		Number of Composites				ļ	verage	Grade	(ppm)			
	Domain Classification	Domain	Cu	Au	Ag	Мо	As	Cu	Au	Ag	Мо	As
		East Porphyry	3776	3776	2806	3776	3776	6699	0.13	2.1	106	138
		West Porphyry	1425	1425	794	1425	1425	4299	0.12	1.1	147	259
	Mineralised	Outer East Porphyry	975	975	555	975	975	2535	0.06	1.6	93	120
		Outer West Porphyry	532	532	170	532	532	2550	0.10	1.1	54	144
		Skarn Total	269 6977	269 6977	168 4493	269 6977	269 6977	7661 5348	0.33	8.1 2.1	15 105	159 162
		Barren Breccia	797	797	591	797	797	1702	0.07	1.5	49	44
		Diorite Dyke	187	187	115	187	187	1011	0.04	0.3	56	24
	Non-Mineralised	Serpentinite	541	541	321	541	541	914	0.07	2.6	19	64
		Unconstrained	4844	4844	1727	4844	4844	942	0.05	2.1	47	88
		Total	6369	6369	2754	6369	6369	1037	0.05	2.0	45	78
	Tot	tal	13346	13346	7247	13346	13346	3290	0.09	2.0	77	122
Relationship	There is no discern	ible relationship b	betwe	en gra	ade a	nd di	fferin	g inte	rval le	ength	s or	
between	orientation of holes to domain geometries.											
mineralisation												
widths and		d LIQ A have not r		in a d		orcist	ont n	rovoil	ingue	ining	~ r	
	EMM personnel ar		-				•		-	-		
intercept	micro/meso-scale mineralizing orientations at Beutong. Furthermore there is no oriented											
lengths	core and limited logging data to effectively investigate this relationship through data											
	interrogation methods. Due to the nature of the mineralisation H&A considers that the											
	-											
	mineralised drill in	tercept lengths ap	oproxi	mate	true	thickı	nesse	s (res	ulting	in mi	nima	l impact
	on experimental variography) and that the modelling of the deposit, in generating a resource											
											0	
	estimate, correctly	accounts for any	voluli	10 (10	illiag		ISIUEI	ation	5.			
	110.0					- 4 :		• • • • • •		. 1:		
	H&A considered th				-	-	-	-	-	-		ations
	(eg. vein to core a	(is angles) be acco	unted	l for tl	hrou	gh cla	ssific	ation	of the	reso	urce	
	estimate. With the	e mineralisation b	eing b	oth o	fpor	ohvrv	and	skarn	style	and o	of sign	ificant
			•		•				•		Ŭ	
	scale, and at the cu											
	estimate), H&A co	nsiders that any lo	ocal ur	าfavoเ	urable	e prin	nary s	sampl	ing or	ienta	tion v	vould
	not materially imp	act on the global a	grade	of the	e Mea	asure	d and	Indic	ated I	Resou	rces	at
	not materially impact on the global grade of the Measured and Indicated Resources at											
	Beutong. Any risk to the estimate associated with the primary sampling orientation within											
	the less densely drilled volumes of mineralisation is reflected through the low confidence											
	Inferred Resource Classification (JORC 2012) applied to these volumes.											
		,		, ,	•							
Diagrammes	Tables and figures	relating to drillho	le loca	ations	. plar	and	cross	secti	on int	erpre	tatio	ns and
Diagrammes	-	-			•							
	tabulated drillhole	•				• •	•				-	
	JORC 2012 table re	eport, as are diagra	amme	es rela	ting	to the	e data	i evalı	uation	and	resou	rce
	modelling procedures.											
Balanced	The entire sample	intervals utilized i	n tha	racou	rco m	ndal	havo	heer	COM	nocito	nd and	4
reporting	presented in the "I	urill hole informat	ion" s	ectio	n of t	nis ta	ble.	Signif	icant i	nters	ectio	ns not
	included in the res	ource model are a	also lis	included in the resource model are also listed in this section.								
	Only drillhole and geological mapping data/information is utilised in undertaking the											
Other	Only drillhole and	geological mannin	g dat:		rmat	ion is	utilis	ed in	unde	rtakin	g the	
Other				a/info								
substantive	Beutong 2019 Reso	ource Estimate. T	hese o	a/info datase	ets ar	e disc	cussed	d und	er app	oropri	ate s	ection
		ource Estimate. T	hese o	a/info datase	ets ar	e disc	cussed	d und	er app	oropri	ate s	ection

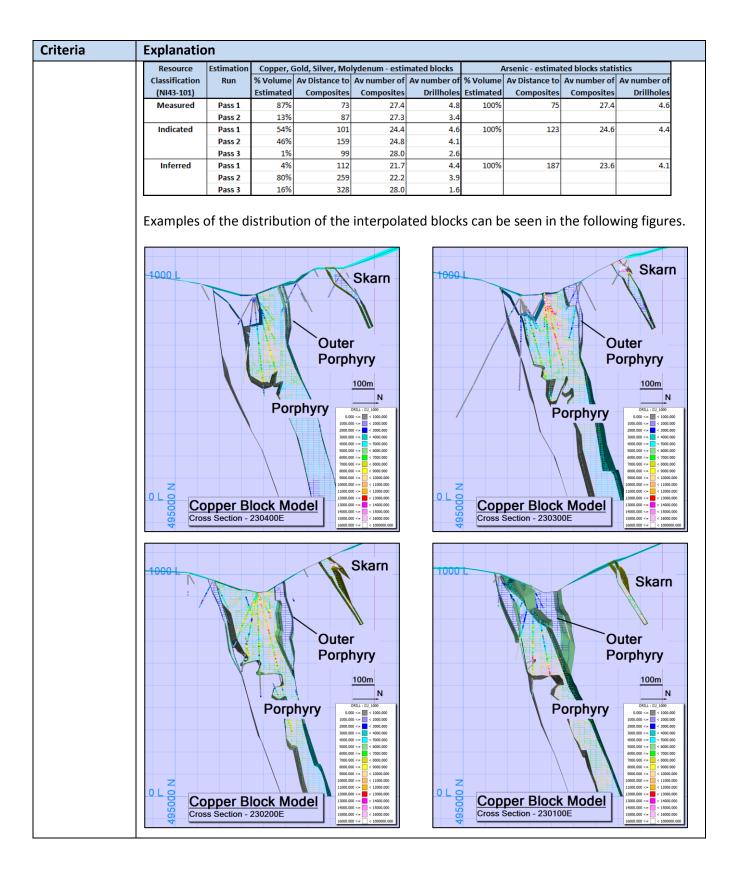

Criteria	Explanation
	or information offered to or uncovered by H&A during the course of generating the Beutong
	2019 resource estimate.
Further work	Infill and extension drilling is required to update and expand the current mineral resources at Beutong. These activities are discussed further under the "Discussion of relative accuracy/ confidence" section below.


Estimation and Reporting of Mineral Resources

Criteria	Explanation
Database	EMM Supplied Files
integrity	
	113 files containing data, information and interpretation were utilised by H&A in
	undertaking the Beutong 2019 resource estimate. The data and information covered areas
	of the estimation such as:
	 Topography and grids: utilised for the validation of Drillhole locations and Resource Estimate topographic surface. Drilling data: hole details, logging, sampling details and lab assay result files (routine plus QC) for generating csv files for resource estimation software (includes cross-check against rebuilt assay dataset from ITS report files). Utilised for creating domain triangulations, block model and resource model/estimate. SG data: DBD data for determination of Tonnage Factors. Geological Interpretation: 3D dxf transfers of TCS and EMM geological interpretation – cross sections, radial interpolation models and surface plans utilised
	for guiding and validating resource domain triangulations.
	 QC analysis: Utilised for determining assay reliability and verification.
	 Data quality evaluation: core recovery logging utilised to assess with grade to determine sampling reliability
	Details regarding the use of this data in producing and classifying the Beutong 2019 resource
	estimate are included under the appropriate sections in this document.
	H&A is satisfied that the files/data and information supplied by EMM is sufficient and suitable for producing a resource estimate on the mineralization at Beutong and for evaluating the risk inherent in the estimate and reporting findings following the guidelines set out in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code, 2012 Edition). EMM provided written assurance that the data supplied is current, complete, accurate and true and that they have disclosed all data and information material for the assessment of the resources at Beutong.
	Validation and Checks
	In March 2012 TCS instigated a project to re-organize and review all historic data and information and correct/validate the previous workers drilling data from source files uncovered during this work. In parallel to this, TCS's personnel constructed and corrected data within a Vulcan [™] database while undertaking evaluation of the drilling and the geological interpretation of the Beutong deposit. The TCS Access [™] database (now EMM Access [™] database, having been updated with the 2018 drilling data) is the official dataset for the project and the Vulcan [™] dataset is an alternative that has been utilised as a check dataset for validating the resource estimation data.
	Drill core logging was validated through cross-checks with details in core photographs during the EMM cross-sectional interpretation stage of the work. Clay logging was also checked and completed at this stage, where logs for historic holes were compiled.

Criteria	Explanation
	There are no recorded audits of the drilling database. The FPT, TCS and EMM drilling
	datasets were validated by H&A prior to undertaking the 2019 resource estimate (refer to
	comments in the "Verification of sampling and assaying" section).
	Additional checks undertaken by H&A in undertaking the Beutong 2019 resource estimate:
	• Evaluation of sampling, comminution, subsampling and assay Quality Assurance, Quality Control programmes/analyses.
	 Cross check of Vulcan[™], Access[™] and rebuilt ITS SIF file assay datasets. Cross-checking of 2019 data with time stamped 2014 resource assay data.
	 Spurious SG (DBD) data were excluded from the dataset used in determining resource tonnage factors.
	 All drillhole datasets were subjected to interval checks (missing, overlaps, gaps), element field checks (missing, detection limit conversion, over range assay substitution). Hole locations not verified by GPS surveys were verified by cross checking collar coordinates against historic maps plotting their location.
	 Downhole surveys from the database were crosschecked against the collar survey details and a secondly supplied Vulcan[™] survey dataset. Significant deviations in azimuth and dip measurements were investigated (± 5 degrees deviation between consecutive surveys, assessment with geology logs) and the drillhole trace determined by utilising adjusted azimuths and dips to account for severe, unexplained and most likely erroneous surveys.
	 Basic statistics confirmed that the Vulcan[™] compositing routine was correctly employed and executed on the resource dataset in generating the resource 3m composite dataset.
Site visits	 Duncan Hackman from Hackman and Associates Pty Ltd (H&A) undertook a site inspection of the Beutong Project, the TCS core processing and storage facility (the current EMM facility) and the PT Intertek Utama Services sample processing and laboratory facilities from February 27, 2012 to March 3, 2012. The primary reason for visiting the prospect, core and laboratory facilities was to locate and confirm evidence of exploration activities reported by TCS and earlier workers, to observe the drilling and sampling procedures being conducted by TCS and to observe and confirm copper mineralisation in core and outcrop. H&A also assessed and modified core handling and sampling protocols employed by TCS to improve their suitability for preserving core and sample integrity, accounting for site and prospect specific conditions and features, so that greater reliability can be placed on data and information derived from the material. A protocols document was produced from this work. H&A did not uncover any reason to question the exploration activities undertaken in exploring and evaluating the Beutong areanest nor to question the process document was produced from the supervise the supervision activities undertaken in evaluation.
	exploring and evaluating the Beutong prospect nor to question the presence of copper mineralisation of the tenor and styles reported by TCS/EMM.
	Geological and assay results for the 2019 resource update holes are not unusual for the Beutong mineralisation and H&A considers that no material changes to the understanding or evaluation of the Beutong mineralisation has occurred in the intervening time between Mr. Hackman's site visit, the 2012 resource estimate, the 2014 resource estimate and the 2019 resource estimate.

Explanation
A summary of the geology and mineralisation is included under the "Geology" section
(above).
Sectional interpretation of the project geology was supplied from site to H&A as 3D drawing exchange files (example shown in the "Geology" section (above). The outlines in these files and a 3D radial interpretation TIN model supplied by EMM were used as a guide to generate the resource interpolation domains which are TIN (triangulated) 3D geometries that honour both the geological interpretation, the copper grade from the drillhole data and the spatial location of samples. The interpolation domains differ from the geological interpretations as they have been simplified to more robustly honour the drilling intercepts (straight line interpretations), are restricted to the mineralised portions of the porphyry and have been modified to generate more simplified 3D geometries than those described by the sectional geology interpretation strings and EMM radial interpolation models are comparable where the mineralisation is classified as Indicated and Measured Resources (JORC 2012). The Beutong resource domains were modelled using the Minesight [™] mining software package and triangulations imported into Vulcan [™] to complete the resource estimate. To ensure spatial consistency the drillholes were first desurveyed in Vulcan [™] , then polar coordinates were generated for each assay interval and used to define the hole traces in Minesight [™] . The triangulations used in generating the estimation and tonnage factor domains are displayed in the following figures:

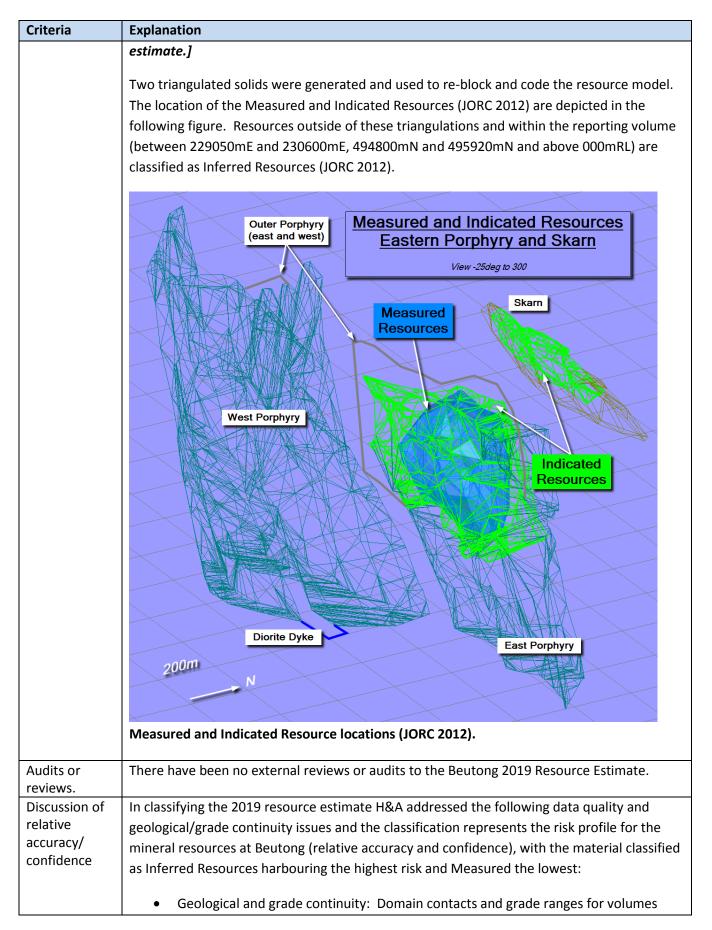


	Explanation							
	Contact	Domain	Count		e Grade : Sa			
	Demokran Feette	Development Facet			Mo (ppm)			
	Porphyry_East to Outer Porphyry East	Porphyry_East Outer Porphyry East	91 85	4639 1953	175 93	0.06	1.4 0.7	174 69
		Porphyry_East	270	5250	87	0.03	2.1	67
	Porphyry_East to other	other	270	1470	40	0.06	1.5	45
	Outer_Porphyry_East to	Outer_Porphyry_East	65	2903	55	0.05	3.3	156
	other	other	70	1527	47	0.04	0.7	36
	Porphyry_West to	Porphyry_West	67	4376	84	0.10	0.6	188
	Outer_Porphyry_West	Outer_Porphyry_West	59	2020	64	0.07	1.7	93
	Porphyry_West to other	Porphyry_West	72	3752	131	0.10	2.7	199
	Outor Bornhuny West to	other Outer Berehver West	80 41	1568 778	90 63	0.07	2.8	125 79
	Outer_Porphyry_West to other	Outer_Porphyry_West other	41	674	75	0.10	11.8	
	other	Skarn	143	7831	,5	0.28	8.5	
	Skarn to other	other	131	878	19	0.06	2.1	51
	 Clay type 1 = v Clay type 2 = r commonly sho Clay type 3 = s 	no clay alteration. weak patchy/blotch moderate to strong owing weak to mode strong to intense pe howing moderate to between DBD and	patchy, erate in rvasive o intens	/blotchy ternal co clay alte se intern	clay alte ore loss. eration, c al core le	eration a obliterat oss.	ing orig	inal texture
Dimensions	The Beutong 2019 res copper-gold-silver-mo Zone 47N). The miner 1500m (towards 080 ^o (refer plan, cross secti interpretation", above below surface, indicat delineation drilling. M Porphyry style copper	lybdenum mineralis ralisation has been o), across a total wid on and diagrammes e). The deepest dril ing that the minera	sation c delineat th of 70 s in sect ling inte lisation n to the	entred c ted as th 00m and tions "Ge ercepts t persists	on 22990 ree bodi to a dep eology" a he porpl below tl	OE, 4954 les over th of 60 and "Geo hyry min he curre	400N (W a strike Om belo ological neralisat nt dept	/GS84, UTI length of ow surface ion at 800i

Criteria	Explanation
	between the mineralised domains is reported in the mineral resource table and in tables describing assays from these domains in sections "Drill hole Information" and "Data aggregation methods" (above).
Estimation and modelling techniques	Grade estimation was undertaken using the Vulcan [™] software. Assay data was composited to 3m lengths. Both block model and composites were coded by estimation domain triangulations and these codes used to guide grade interpolation.
	Kriging Parameters
	The experimental data analysis and estimation design was undertaken by QG Group Pty. Ltd. (QG) in conjunction with H&A. The analysis was undertaken for the 2012 estimate and remains the same for the 2019 estimate. The additional of data from the four holes in 2014 and 7 holes in 2019 targeted mainly the sparsely drilled Inferred volumes of the mineralisation (70% of composites in the additional data). 51% of composites in the 2012 dataset are within the Measured and Indicated volumes of the mineralisation which increases by 6% to 57% in the 2019 dataset. H&A considers that the spatial location and relative distribution of the new data (Measured+Indicated vs. Inferred volumes) will have negligible effect on the data analysis and estimation design as therefor has adopted the 2012 estimation parameters for the 2019 resource estimate.
	QG reviewed the data and domain models and recommended that:
	 Hard boundaries should be used for the estimation Cu, Au, Mo and Ag (according to estimation domains). While As should be estimated un-bounded; Spatial (variogram) analysis for Beutong shows the Cu grade within the main Porphyry domain to be reasonably continuous with maximum range of 200m towards 340° with a 70° dip, as illustrated by relatively low 'nugget' (25%). However, the Au, Ag, and Mo grades are less continuous within the Porphyry domain with moderate relative nugget effects (42 – 54%) and ranges of 45 to 200m. All elements across the Outer Porphyry and Skarn domains display only moderate continuity with relative nugget effects in the range of 40 – 54% and ranges from 34 to 190m. The decision to not use a boundary in the estimation of As is further supported by the variogram using all of the data, which displays reasonable continuity with a range of 45m and a relative nugget of 29%; A grade restriction strategy be applied to the Porphyry, Outer Porphyry and Skarn domains for Cu and Au, based on assessment of the histogram, cumulative probability plots and grade length of the element concerned; and The results of QKNA suggest an ellipse in the order of 200m x 120m x 90m for all three domains, orientated to the average orientation of 28, with 7 samples per quadrant.

Criteria	Explanation									
	High Grade Treatment									
	Treatment of high grade composite data is listed in the fully the table									
	Treatment of high grade composite data is listed in the following table.									
	Element Porphyry Outer Porphyry Skarn %Metal Threshold Treatment Composites Av. Grade Threshold Treatment Composites Av. Grade diffence (from									
	(ppm) Affected > threshold (ppm) Affected > threshold (ppm) Affected > threshold characteristication Cu 16000 Restrict 73 20053 11000 Restrict 24 15883 17000 Restrict 26 26160 3.0%									
	Au 0.60 Cut 27 1.12 0.50 Cut 8 1.14 0.65 Restrict 35 1.37 3.7% Ag 6.0 Restrict 191 13 3.5 Restrict 47 10.3 15.0 Restrict 27 21.7 26.0%									
	Mo - None - None - 30 Cut 20 120 0.8% As 2000 Cut 102 3900 incl in Porphyry figures incl in Porphyry figures 25.6%									
	Block Interpolation Parameters									
	Advice from QG and visual observations regarding the data spatial distribution and domain									
	geometries were used to design the neighbourhood search parameters. The following									
	parameters were utilised for interpolating grade into the block model:									
	• First Pass:									
	 Minimum number of composites to estimate variable: 6 									
	 Maximum number of composites to estimate variable: 28 									
	• Octant Search:									
	 Minimum number of composites per octant: 1 									
	 Maximum number of composites per octant: 4 Minimum number of extents informed before a grade is estimated. 									
	 Minimum number of octants informed before a grade is estimated: 4 									
	 A minimum of samples from 4 drillholes required before a grade is 									
	estimated									
	 No limit to maximum number of samples accepted from individual holes 									
	• Composite values above cuts are set to cuts. Samples above restriction									
	thresholds are restricted to estimate blocks within 50 (major) x 50 (semi-									
	major) x 30 (minor) metres from composite location, oriented by search									
	ellipsoid.									
	 Each block is discretized with 									
	 5 steps in the X direction, 									
	 5 steps in the Y direction and 									
	 2 steps in the Z direction 									
	 Sample points are selected by a search ellipsoid with the following Radii: 									
	 Major: 200m 									
	 Semi-major: 120m 									
	 Minor: 90m 									
	Composites restricted to interpolate grade into the blocks within the									
	same estimation domains as they are located for Cu, Au, Ag and Mo. No									
	restrictions applied in the estimation of As.									
	 Ellipsoids orientation: 									
	 Porphyry and Outer Porphyry Domains: 									

Criteria	Explanation					
	 Bearing: 340^o rotation around Z' axis 					
	 Plunge: -70^o rotation around Y' axis 					
	 Dip: 0^o rotation around X' axis 					
	 Skarn: 					
	 Bearing: 270^o rotation around Z' axis 					
	 Plunge: 0^o rotation around Y' axis 					
	 Dip: -60^o rotation around X' axis 					
	 Ordinary Kriging parameters involving a nugget and two nested 					
	spherical structures.					
	 Estimates are conducted at block centroids and written to sub- 					
	blocks					
	 Second Pass – for blocks not estimated in Pass 1 and if the number of drillholes is 					
	less than 4 in pass 1, parameters the same as for Pass 1 except:					
	 The minimum number of drillholes requirement not utilised 					
	 Sample points are selected by a search ellipsoid with the following Radii: 					
	 Major: 600m 					
	 Semi-major: 360m 					
	 Minor: 270m 					
	 Pass 2 not undertaken for As (increased search ellipsoid selects samples 					
	from significant lateral distance away from mineralised domains).					
	• Third Pass – for blocks not estimated in Pass 1 or Pass 2, parameters the same as for					
	Pass 2 except:					
	 No octant search requirement in selecting composites for grade 					
	interpolation.					
	Grade Interpolation Performance					
	The basic statistics on the reliability of the estimates are listed in the following table. The					
	interpolation (and classification) strategy has performed as designed, with blocks estimated					
	and classified as Measured Resources (JORC, 2012) having been estimated with close to the					
	ideal (maximum) composite numbers, from a high number of holes, located relatively close					
	to blocks (<87m). 87% of the Measured Resource is interpolated in the first pass, whereas					
	for the Indicated Resources this portion drops to 54% and lower at 4% for the Inferred					
	Resources. The Inferred Resources fails on the first estimation run pass predominantly due					
	to the minimum number of holes requirement (set at equal to or more than four holes).					
	Copper, Gold, Silver and Molybdenum grades are estimated for the entire porphyry, outer					
	porphyry and skarn TIN models. A single pass utilised in interpolating arsenic has resulted in					
	grades being estimated for 100% of the Measured Resources, 96% of the Indicated					
	Resources and only 36% of the Inferred resources.					
	Internalation statistics for estimated blocks					
L	Interpolation statistics for estimated blocks					


Criteria	Explanation						
	Image: constrained copper grades.Display of estimated Copper grades.						
Moisture	The resource estimate tonnage factors are based on dry bulk density measurements. All assays were undertaken on oven dried sample pulps. The resource is estimated on a dry basis.						
Cut-off parameters	 Dasis. The Beutong 2019 Mineral Resource (JORC 2012) is reported at 0.3% and 0.5% copper reporting cuts and for a volume bound by 229050mE and 230600mE, 494800mN and 495920mN and above 000mRL. The reporting cuts of 0.3%Cu and 0.5%Cu are in line with how resource estimates are reported for other porphyry projects in the Southeast Asia Region. For example: Batu Hijau, a large porphyry mine with a resource of 914 Mt @ 0.53% Cu & 0.40 g/t Au applies similar reporting cuts. Tampakan, in the Philippines applies reporting cuts of 0.2%Cu and 0.3%Cu. 						
	The 0.3%Cu reporting cut is the preferred cut for reporting of the Beutong Copper Mineralisation as it defines the extent of the Mineral Resources considered to have reasonable prospect of economic extraction.						
	The 0.5%Cu reporting cut spatially delineates the extent of the high grade core in the upper reaches of the East Porphyry Mineralisation. It also describes 80% of the Measured Resources and 65% of the Indicated Resources. 65Mt of Measured + Indicated Resources and 46Mt of Inferred Resources reported above this cut are estimated within the East Porphyry Mineralisation and reflect a likely high-grade copper resource that would impact positively in any economic analysis of the project.						
Mining factors or assumptions	There has been no investigation into Ore Reserve modifying factor parameters for the Beutong 2019 Resource Estimate.						
Metallurgical	Preliminary flotation test work was conducted on Beutong drill core samples by Metcon						

Criteria	Explanation
Criteria factors or assumptions	 Explanation Laboratories. The aim of the test work was to demonstrate acceptable metallurgical performance of a conventional crush/grind/flotation process to produce a saleable, quality product (copper concentrate). The main copper bearing minerals reported at Beutong are covellite and digenite which suggest high concentrate grades will result from flotation. Enargite (Cu₃AsS₄) is also reported and could potentially lead to elevated levels of arsenic (As) in the copper concentrate produced. Despite the preliminary nature of the test programme and the quality of the samples used, the simple conclusions are as follows: Beutong ore is amenable to a conventional crush/grind/float process. A saleable copper concentrate can be produced – both in terms of the copper grade and the arsenic levels. Further test work is needed to improve the metallurgical performance – higher copper recoveries and concentrates grades are expected than returned from the current testwork. [<i>Note: Three holes drilled by EMM in 2018 were done so to obtain representative metallurgical samples from the higher grade core of the East Porphyry Mineralisation. Core from these holes have been preserved by drying, nitrogen purging and vacuum sealing in preparation for future testwork.]</i> Elevated molybdenum levels in ore may provide for a by-product molybdenum concentrate with related financial benefits.
Environmental factors or assumptions	There has been no environmental investigation at this early stage of work on the Beutong project. There are 2 types of forest classification within the Beutong IUP area; Protected and Other Purposes. Based on Aceh Provinces's Department of Forestry function map (Number 522.51/4261-III), approximately 36.2% (3,617ha) of the IUP is designated as Areal Penggunaan Lain (APL) or Forest Other Purposes (open pit or underground mining permitted, and the remaining 63.8% (6383ha) is classified as protected or conservation forest (underground mining permitted, no open-pit mining). The Beutong project area is 100% within the forest classification APL, the Ministry of Forestry does not require companies to obtain a Pinjam Pakai permit to conduct exploration activities within areas designated APL. No exploration has been carried out in areas outside of the APL area surrounding the Beutong Project.
Tonnage Factors/Dry Bulk Density	Tonnage FactorsAverage dry bulk density numbers are employed as tonnage factors for the resource estimate.Dry Bulk Density (DBD) determinations were coded by the modelled clay domains. The average DBD for samples within the clay domains is 2.25g/cc (from 389 samples) and for those outside of the clay domains is 2.37g/cc (286 samples). These tonnage factors were stamped on the block model according to clay coding of blocks assigned by the same clay domains.

Criteria	Explanation					
	Dry Bulk Density Determination					
	SG measurement taken by FPT are more akin to bulk densities as core was sun "dried" and immersed unsealed for volume determination. FPT SG measurements were not used in determining tonnage factors.					
	There are no drying ovens at Beutong and TCS (2011 to 2014) undertook dry bulk density measurements by:					
	 Undertaking core yard SG measurements as the first activity in drill core treatment (immediately). The protocols rely on the SG sample surface being saturated, which occurs during the drilling process. 					
	 Geologists selecting nominal minimum 20cm pieces of core to be representative of the physical characteristics of significant intercept lengths of material. The general rule employed is that if a change in the characteristics looks significant (goes for a number of meters) then select a sample that is representative of that changed material. 					
	 Weighing sample in air (QA protocols assure balance accuracy) 					
	• Weighing sample submerged in water (QA protocols ensure water quality and depth assured). Volume of sample determined.					
	Transferring SG sample to ITS laboratory (Medan) for weighing, oven drying and re-					
	 weighing. Moisture content and dry bulk density determined. Returning SG sample to assay-interval sample for inclusion in analysis. 					
	To guard against sample selectivity, and to reflect the observation that sulphide content is generally low for mineralised intervals, the BD and DBD datasets were trimmed to exclude values <1.00g/cc and >3.00g/cc.					
Classification	Confidence in geological and grade continuity, data reliability and interpolation reliability are the key considerations in determining the resource classification as per the guidelines outlined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The JORC Code, 2012 Edition. Only the more closely drilled areas of the Eastern Porphyry and Skarn mineralisation were considered for Indicated and Measured Classification on this criterion. Drilling density for all other areas of the resource at Beutong is such that the geological and grade continuity is assumed (based on the porphyry mineralisation model) which limits their classification to Inferred status under the JORC Guidelines (2012 Edition).					
	In classifying the resource:					
	 Domain contacts for volumes considered for Measured and Indicated Resources had to be well defined and consistent/predictable by drill holes and surface data. The volume most densely drilled shows that the geological contacts for the Measured and Indicated Resources are acceptably consistent and predictable from section to section. Grade ranges within volumes considered for Measured and Indicated Resources had 					
	to be consistent/predictable. Contact analysis investigations show significant grade tenor differences between interpolation domains and consistency throughout the					

Criteria	Explanation
	 Measured and Indicated Resources volumes (on a moving average basis). Analytical QC data for EMM, TCS and FPT samples shows that resources estimated with samples from holes drilled by these workers can be considered for Measured and Indicated Classifications, however the unknown reliability of the HG assays dictates that resources estimated with significant weighting of this data be considered only for Inferred Classification (JORC 2012). The suspected core recovery and handling/sampling issues, suggested from observations in both the relationship between recovery and grade and the grade tenor comparisons between datasets, shows that there is a risk associated with resources estimated by the FPT and HG data. Volumes considered for Measured and Indicated Resource classification that have a high portion of their source data from these programmes were assessed with respect to their grade continuity with adjoining volumes estimated predominantly with data from the EMM and TCS drilling programmes before being assigned these classifications.
	The sample weightings for the portions of Measured and Indicated Resources can be seen in the figure below. The effect of the suspected low biased FPT data will correlate positively with the percentage of FPT data selected to inform a block's grade. The figure shows that for 52% of the Measured Resource and for 66% of the Indicated Resource the FPT sample weighing is <25% (>75% TCS data). It is likely that grades for these resources are affected at lower than 10% (relative); however this estimate of risk cannot be verified without appropriate test work. Similarly 32% of the Measured Resource and 21% of the Indicated Resource are estimated with more than 50% of data from the FPT drilling. Grades may be affected in the range of 10% to 30% (relative) for these resources. Spatial analysis identifies the upper 140 metres of the Eastern Porphyry Measured and Indicated Resources being heavily weighted by the FPT data, particularly between sections 230100E and 230300E. <i>[Note: This analysis was undertaken for the 2014 resource estimate and not updated with the data from the four holes drilled into the eastern porphyry in 2018. The addition of the 2018 holes into this evaluation would not impact materially on the observations, interpretations stated and the actions undertaken in classifying the resource estimate.]</i>
	Globally the Measured Resource estimate is 65% weighted by TCS (and EMM) data, 34% by FPT data and 1% by HG data. The Indicated Resource estimate is 75% weighted by TCS (and EMM) data, 23% by FPT data and 2% by HG data. Globally, the risk associated with the FPT data has been minimized due to the drilling configuration and the interpolation methodology (it is likely that the use of the FPT data has translated into a 5-10% reduction in the global Cu grade). However, the risk associated with local resources that are heavily weighted by the FPT data will have manifested as a more severe low grade bias, translating into uncertainty of resources, particularly those close to mining cut-off grades. This risk must be considered when applying conversion factors in determining Reserves from both the

Criteria	Explanation						
	Measured and Indicated Resources.						
	• The details on sample numbers, drill hole numbers and average distance from block centroids to samples were stored during the grade interpolation process. This information was plotted and utilised as a guide in determining the confidence in the resource estimation.						
	 Criteria for outlining volumes to be considered for Measured Resource classification (JORC 2012) were, where blocks are predominantly estimated: With no fewer than 28 samples – the optimum number of samples recommended by the QG Quantitative Kriging Neighbourhood Analysis study. With samples selected from no fewer than 4 drillholes. With the average distance of samples selected is no greater than 100m. From the first interpolation run/pass. Statistics for adherence to these criteria can be seen in the "Estimation and modelling techniques" section (above). Criteria for outlining volumes to be considered for Indicated Resource classification (JORC 2012) were, where blocks are predominantly estimated with: No fewer than 25 samples (except for eastern edge of the East Porphyry where sample numbers are no fewer than 15). Samples selected from no fewer than 4 drillholes (except for eastern and western edges of the East Porphyry where hole numbers are no fewer than 3). Statistics for adherence to these criteria can be seen in the "Estimation and modelling techniques" section (above). 						
	Measured Resources: Interpolation Input Data Analysis						

Criteria	Explanation						
	considered for Measured and Indicated Resources had to be well defined and						
	consistent/predictable by drill holes and surface data.						
	Assay reliability: Only resources where grade interpolation is heavily weighted by						
	samples from the FPT, TCS and EMM drilling data were considered for Measured and						
	Indicated Resource Classification. The assay quality control data shows that these						
	assay data are of adequate reliability, whereas the reliability of the HG assay data is unknown.						
	Core recovery and sampling: Grade profiles of volumes where resources are heavily						
	weighted by FPT (and HG) data were assessed against the profiles of adjoining						
	volumes (where resources are heavily weighted by TCS and EMM data) as part of the						
	consideration in assigning Measured and Indicated Classification to these volumes.						
	The EMM and TCS data is shown to have higher core recovery percentages and						
	deemed to have more appropriate core handling and sampling protocols than the						
	other data.						
	 Interpolation reliability: Only those resources that were estimated from the interpolation strate system that utilize a second strategy designed to maximize and a solicibility. 						
	interpolation strategy that utilises parameters designed to maximize grade reliability						
	from close-spaced data were considered for Measured and Indicated Classifications						
	(the "First Pass"). Additional considerations regarding sample and drillhole						
	numbers, average distance to, and spatial coverage of composites (selected for interpolation) were employed to						
	Measured or Indicated Resources.						
	A systematic and rigorous process was employed to define volumes for classifying Measured and Indicated Resources from the Resource Model. Validation of the resource classification shows that:						
	For Measured Resource Material:						
	\circ 65% is weighted by TCS (and EMM) data, 34% by FPT data and 1% by HG						
	data.						
	 87% of volume is estimated from the First Pass interpolation run. 						
	 An average of 27.4 composites used in estimating block grades. 						
	 An average of 4.6 drillholes accessed for composites used in estimating block 						
	grades.						
	 Average distance of 74m to composites used in estimating block grades. 						
	For Indicated Resource Material:						
	 75% is weighted by TCS (and EMM) data, 23% by FPT data and 2% by HG 						
	data.						
	 54% of volume is estimated from the First Pass interpolation run. 						
	• An average of 24.9 composites used in estimating block grades.						
	 An average of 4.4 drillholes accessed for composites used in estimating block 						
	grades.						
	 Average distance of 128m to composites used in estimating block grades 						
	For Inferred Resource Material:						
	 4% of volume is estimated from the First Pass interpolation run. 69 						

Criteria	Explanation
	 An average of 23 composites used in estimating block grades.
	• An average of 3.6 drillholes accessed for composites used in estimating block
	grades.
	 Average distance of 264m to composites used in estimating block grades
	These statistics verify that the classification strategy was implemented as intended and
	transparently portray the level of confidence underpinning the resource classification.
	The following evaluation programmes are indicative of what is required in increasing the size
	of and confidence in the resources at Beutong. H&A in discussion with EMM proposes these
	as it is the opinion of both parties that each or both of these actions are required in
	advancing the project towards definitive feasibility studies.
	The Beutong mineralisation is interpreted to extend to the east, west and below the limits of the 2019 Resource Model volume. Expansion of the resource is expected with holes targeted in these areas. Of note, the immediate eastern extension of the skarn mineralisation transgresses the Hutan Lindung area (protected forest) where permitting is required to undertake any exploration activities and the prospectivity to the east of the east porphyry is seen as limited as the barren phreatomagmatic breccia is interpreted to dominate in this area.
	Drilling within and in proximity to the current Indicated Resources will increase the volume of the resources available to be considered for Measured and Indicated Classification in future resource estimates (at the expense of the current Indicated and Inferred Resources). Close proximity drilling or twining of holes within the current Measured Resources will be required to obtain data for robust change of support analysis which can be utilised for more robust design of grade interpolation parameters and for the evaluation of suitable mining parameters and protocols for defining, delineating and extracting ore material.
	H&A suggests the following approaches be considered to expand and upgrade the mineral resources at Beutong:
	 Holes be drilled to test for lateral extension of mineralisation (E-W) to depths of up to 500m below surface:
	 Porphyry Mineralisation: 100m step-out section drilling. Two angled holes per section designed to intercept mineralisation between 150m and 200m and again between 400m and 500m depth (approximately 1200m per section).
	 Skarn Mineralisation: 50m-100m step-out section drilling. Two angled holes per section designed to intercept mineralisation between 100m and 150m and again between 200m and 250m depth (approximately 700m per section).
	Sequential step-out continuation and extent will be depended on results obtained from previously drilled holes within the programme.

Criteria	Explanation
	Holes drilled to test for vertical extension of the mineralisation:
	 Porphyry Mineralisation: the current resource is interpreted to extend to
	below 1000m from surface, between 200m and 300m beyond the deepest
	drill intercepts. Two strategies should be considered, reflecting the risk
	associated with the reliability of the current model projection. The first is to
	drill to intercept the current model at depth and extend beyond the
	interpreted model (holes >1500m in length, and confirming current model
	plus extending 200-300m). The second and higher risk strategy is to drill to
	intercept beyond the current model extent (hole >2000m in length, and
	confirming current model plus extending 400-500m). Both the BWP and BEP
	would require two to three holes to confidently establish vertical
	continuation across the length of the current resource.
	 Skarn Mineralisation: Three angled holes >550m in length designed to
	intercept mineralisation between 150m and 200m down-dip from current
	resource model.
	To convert the current Indicated Resources to Measured Resources the drilling
	density within the Indicated Resource volume will need to be increased by an
	estimated 50% in the BEP and 100% in the skarn mineralisation and, by extending
	these holes beyond the Indicated volume, will enable the conversion of Inferred
	Resources to Indicated Resources at BEP. H&A suggests that, if converting
	mineralisation to higher classification is required for the advancement of the project
	then:
	\circ For the BEP: drilling between 11 and 15 holes averaging at least 600m, but
	extending to >800m to convert Inferred to Indicated Resources.
	\circ For the skarn mineralisation: drilling between 15 and 20 holes averaging
	250m. due to the planar nature of the skarn mineralisation additional 10 to
	15 holes averaging 250m will be required to convert Inferred Resources to
	Indicated Resources
	 Close spaced or twin holes for change of support and associated analyses:
	\circ For the BEP: two holes averaging 500m in length.
	 For the skarn mineralisation: three holes averaging 250m in length.
	Technical Recommendations
	The following activities directed at reducing risk and improving the confidence in the input
	data utilised in generating future estimates of the copper resources at Beutong are
	recommended by H&A:
	 Update Access[™] database with edits undertaken in validating the 2019 Resource
	Dataset.
	 Drillhole locations and TIN domains are corrected with the new collar and
	topographic data from the GeoIndo Survey Services survey and the model re-run
	prior to undertaking any definitive engineering studies.

Criteria	Explanation
	 Adjusted downhole survey data to be entered into EMM Access[™] database.
	• Correct the 633 assay values within the EMM Access [™] database to reflect ITS report
	results.
	 Update EMM Access[™] database with geology logs for entire FPT holes BC005-02A
	and BC025-03A and TCS holes BEU0600-03 and BEU0700-06 and part holes for
	further 73 holes.
	 Enter clay logging into EMM Access[™] database and complete the clay logging by
	including holes BC011-01A and BC025-03 from the FPT drilling.
	 Complete compilation of the recovery logging data within the EMM Access[™]
	database.
	 Locate and evaluate the missing FPT laboratory QC assay data.
	 Update the EMM Access[™] database with laboratory QC assay results.
	 Acquire and assess sizing data for batches showing poor repeatability in the
	duplicate pairs QC dataset.
	 Investigate the precision issues noted in the FPT field standards assay data.
	 Undertake a programme of Referee Laboratory Assays (select samples for check
	assays with the aid of information in the H&A QC report that highlight batches of
	concern regarding current assay reliability).
	Investigate effect of preferential loss during drilling, handling and sampling of core
	and qualify risk associated with using the suspected low biased FPT data, particularly
	at near economic cut-off grades.
	Some of these recommendations will require data from new drill core and this requirement
	should be considered in the design of any future drilling at Beutong.

Abbreviation	:	Meaning
%	:	Percent
%Av	:	Percent average
%Difference	:	Percentage difference (duplicate - original)/original
%MPD	:	Percent Mean Paired Difference = (duplicate - original)/Average(original and duplicate)
%RSD	:	Percentage Relative Standard Deviation = StdDev/Average *100
&	:	and
*	:	any and any length of characters
/	:	divider/divisor
@	:	at
x	:	absolute value (of x)
~	:	approximate
<	:	less than
=	:	equals
>	:	greater than
±	:	plus or minus

List of Abbreviations specific to Beutong Resource Estimate Explanatory Notes

Abbreviation	:	Meaning
°C	:	Degrees Celsius
μm	:	micron
3:1 HCI:HNO ₃	:	Aqua Regia
3D	:	Three Dimension
A\$:	Australian currency
A.B.N.	:	Australian Business Number
A.C.N	:	Australian Company Number
AAMPD	:	Average Absolute Percent Mean Paired Difference = average((duplicate - original)/Average(original and duplicate))
AAS	:	Atomic absorption spectroscopy - method for measuring element concentrations in solution (assays)
Access TM	:	Access (Trade Marked) computing software
Ag	:	Silver
AIG	:	Australian Institute of Geoscientists
AIM	:	formerly the Alternative Investment Market - a sub-market of the London Stock Exchange
AMDAL	:	Environmental Impact Assessment
APL	:	Areal Penggunaan Lain (Forest Other Purposes)
ASL	:	above sea level
Au	:	Gold
AusIMM	:	Australian Institute of Mining and Metallurgy
B.App.Sc. MSc. MAIG	:	Bachelor Applied Science, Master of Science, Member Australian Institute of Geoscientists
BD	:	bulk density
BEP	:	Beutong East Porphyry
Beutong	:	Beutong Copper-Gold-Silver-Molybdenum Mineralisation, Prospect, Project or Area
BGS	:	British Geological Survey
BIC	:	Beutong Intrusive Complex
BKPM	:	Indonesian Capital Coordinating Board
BRPL	:	Beutong Resources Pte. Ltd.
BSc.(Hons)	:	Bachelor Science with Honours
BWP	:	Beutong West Porphyry
CIM	:	Canadian Institute of Mining, Metallurgy and Petroleum
cm	:	centimetre
Со	:	Cobalt
CoW	:	Contract of Work
CRM	:	Certified Reference Material
CSV	:	comma separated value file
Cu	:	Copper
CuEq	:	Copper Equivalent
DBD	:	dry bulk density
Dept.	:	department

Abbreviation	:	Meaning
Doc	:	document
DPOs	:	direct purchase order
DTM	:	digital terrain model
dxf	:	drawing exchange file
E	:	East
E	:	East
EMM	:	PT Emas Mineral Murni
ESDM	:	Department of Energy and Mineral Resources
et al.	:	and others
etc.	:	Etcetera
E-W	:	East-West
FA30	:	30g charge; Fire Assay: AAS detection
Fe	:	Iron
FeO	:	Iron Oxide
FPT	:	Freeport McMoRan Copper & Gold Inc. and International Mining Investments LLC affiliation
Freeport	:	Freeport McMoRan Copper & Gold Inc. and International Mining Investments LLC affiliation
g	:	gram
g/cc	:	unit for measurement of specific gravity - grams per cubic centimetre (also can be expressed as T/m ³)
g/t	:	grams per metric tonne - a measurement of element concentration, interchangeable with ppm
GA31	:	triple acid digest: AAS detection
GPS	:	Global Positioning System
Grade	:	Quantity of metal per unit weight of host rock.
GT	:	Grade Tonnage
H&A	:	Hackman and Associates Pty Ltd
ha.	:	hectare(s)
HCI/HNO ₃ /HClO ₄	:	triple or three acid
HG	:	Highlands Gold Indonesia
hr	:	hour
i.e.	:	that is
IC01	:	aqua regia digest: ICP-OES detection
IC30	:	triple acid digest: volumetric detection
ICP-MS	:	Inductively coupled plasma mass spectrometry - method for measuring element concentrations in solution (assays)
ICP-OES	:	Inductively coupled plasma optical emission spectrometry - method for measuring element concentrations in solution (assays)
Inc.	:	Incorporated
incl.	:	including

Abbreviation	:	Meaning
IP	:	Induced Polarization - involves transmitting a current into the
		ground using two electrodes and measuring the voltage between
160		another pair of electrodes.
ISO	:	International Organization for Standardization PT Intertek Utama Services
ITS IUP	:	Mining Business License (Izin Usaha Pertambangan).
JORC 2012	:	Australasian Code for Reporting of Exploration Results, Mineral
JONE 2012	•	Resources and Ore Reserves. The JORC Code, 2012 Edition.
JV	:	Joint Venture
К	:	Potassium
kg	:	kilogram
KGL	:	Kalimantan Gold Corporation Limited
km	:	kilometre
4 km ²	:	kilometre squared
КР	:	Mining Authorization (Kuasa Pertambangan) - now defunct.
Lat.	:	Latitude
LIDAR	:	Lidar is a remote sensing technology that measures distance by illuminating a target with a laser and analyzing the reflected light
LLC	:	Limited Liability Company
Long.	:	Longitude
Ltd.	:	Limited
Μ	:	million
m	:	metre(s)
Ma	:	million years ago
MAIG	:	Member of Australian Institute of Geoscientist
Max	:	maximum Main Dautas a Diarita
MBD	:	Main Beutong Diorite
mE	:	metres East
mesh MIBC	:	grid mesh (measurement of aperture) Methyl Isobutyl Carbinol
Mil	:	Million
Min	:	minimum
Minesight [™]	:	Minesight (trade Marked) mining industry software
mm	:	millimetres
MMR	:	PT Media Mining Resources
mN	:	metres North
Мо	:	Molybdenum
MODA	:	McArthur Ore Deposit Assessments
MOHLR	:	Ministry of Law and Human Rights
MPD	:	Mean Paired Difference (expressed as a percent)
MPRD	:	Mean Paired Relative Difference (expressed as a percent)
MT	:	Million Tonnes (metric)
MW	:	megawatt
Ν	:	North

Abbreviation	:	Meaning
Ν	:	North
NB.	:	Please note
NE	:	Northeast
NE-SW	:	Northeast-Southwest
NI 43-101	:	"Canadian National Instrument 43-101 - Standards of Disclosure for Mineral Projects" defines and regulates public disclosure in Canada for mineral projects and it relies on resource and reserve classification as defined by CIM.
NI 43-101F1	:	Form 43-101F1 Technical Report
N-S	:	North-South
NW	:	Northwest
NW-SE	:	Northwest-Southeast
Pb	:	Lead
pers. Comm.	:	personal communication
рН	:	measure of the acidity or basicity of an aqueous solution
PLN	:	PT Pelayanan Listrik Nasional
PMA	:	Penanaman Modal Asing (foreign investment company)
ppm	:	parts per million - a measurement of element concentration, interchangeable with grams per metric tonne
PQ PQ3 HQ HQ3 NQ NQ3 BQ	:	Diamond Drill Hole Core sizes
PT	:	Perseroan Terbatas ("Limited Liability") Company
Pte. Ltd	:	Propriety Limited Company
Pty. Ltd	:	Propriety Limited Company
Ру	:	Pyrite
QA	:	Quality Assurance
QC	:	Quality Control
QG	:	QG Group Pty. Ltd. (formerly Quantitative Group Pty. Ltd.)
QKNA	:	Quantitative Kriging Neighbourhood Analysis
Q-Q	:	Quartile - Quartile (plot)
Rd.	:	Road
RE	:	Reference to
RI	:	Republic of Indonesia
RL	:	reduced level (relative to vertical datum - usually ASL - Average Sea Level)
ROM	:	Run-Of-Mine (grade)
RQD	:	Rock Quality Descriptor
RTI	:	Rio Tinto Indonesia
S	:	South
Sb	:	Antimony
SEDAR	:	System for Electronic Document Analysis and Retrieval (Canadian - www.sedar.com)
SFS	:	Sumatra Fault System
SG	:	Specific Gravity (mass/volume)

Abbreviation	:	Meaning
Si	:	Silica
SOP	:	Standard Operating Procedure
StdDev	:	Standard Deviation
Т	:	metric tonnes
T/m ³	:	Metric tonnes per cubic metre
TCS	:	Tigers Copper Singapore No 1 Pte. Ltd.
TIN	:	Triangulated Irregular Network (computer solid model shape that domains features of projects in 3D)
TM	:	Trade Mark
TRC	:	Tigers Realm Copper Pty. Ltd.
TRM	:	Tigers Realm Metals Pty. Ltd.
UKL-UPL	:	environmental management and environmental monitoring program
US\$:	United States of America Currency
UTM	:	Universal Transvers Mercator (Cartesian coordinate grid system)
vol%	:	Percentage of total volume
VS	:	versus
Vulcan [™]	:	Vulcan (Trade Marked) mining industry software
W	:	West
WA	:	Western Australia
WGS84, UTM Zone 47N	:	Spheroid projection and grid datum for the geographical location of data at Beutong
WNW	:	West-Northwest
yr	:	year
Zn	:	Zinc